Brownian motion #
Equations
- ProbabilityTheory.preBrownian t ω = ω t
Instances For
theorem
ProbabilityTheory.map_sub_preBrownian
(s t : NNReal)
:
MeasureTheory.MeasurePreserving (preBrownian s - preBrownian t) gaussianLimit (gaussianReal 0 (max (s - t) (t - s)))
theorem
ProbabilityTheory.isMeasurableKolmogorovProcess_preBrownian
(n : ℕ)
:
IsMeasurableKolmogorovProcess preBrownian gaussianLimit (2 * ↑n) ↑n ↑(2 * n - 1).doubleFactorial
Instances For
theorem
ProbabilityTheory.continuous_brownian
(ω : NNReal → ℝ)
:
Continuous fun (x : NNReal) => brownian x ω
theorem
ProbabilityTheory.measurePreserving_brownian_sub
{s t : NNReal}
:
MeasureTheory.MeasurePreserving (brownian s - brownian t) gaussianLimit (gaussianReal 0 (max (s - t) (t - s)))
theorem
ProbabilityTheory.isMeasurableKolmogorovProcess_brownian
(n : ℕ)
:
IsMeasurableKolmogorovProcess brownian gaussianLimit (2 * ↑n) ↑n ↑(2 * n - 1).doubleFactorial
noncomputable def
ProbabilityTheory.wienerMeasureAux :
MeasureTheory.Measure { f : NNReal → ℝ // Continuous f }
Equations
- ProbabilityTheory.wienerMeasureAux = MeasureTheory.Measure.map (fun (ω : NNReal → ℝ) => ⟨fun (t : NNReal) => ProbabilityTheory.brownian t ω, ⋯⟩) ProbabilityTheory.gaussianLimit
Instances For
instance
ProbabilityTheory.instMeasurableSpaceContinuousMap_brownianMotion
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
:
instance
ProbabilityTheory.instBorelSpaceContinuousMap_brownianMotion
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
:
BorelSpace C(X, Y)
theorem
ProbabilityTheory.ContinuousMap.borel_eq_iSup_comap_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
:
theorem
ProbabilityTheory.ContinuousMap.measurableSpace_eq_iSup_comap_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
:
theorem
ProbabilityTheory.ContinuousMap.measurable_iff_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{α : Type u_3}
[MeasurableSpace α]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
(g : α → C(X, Y))
: