Documentation

BrownianMotion.Gaussian.BrownianMotion

Brownian motion #

Equations
Instances For
    theorem ProbabilityTheory.exists_brownian :
    ∃ (Y : NNReal(NNReal)), (∀ (t : NNReal), Measurable (Y t)) (∀ (t : NNReal), Y t =ᵐ[gaussianLimit] preBrownian t) ∀ (ω : NNReal) (t β : NNReal), 0 < ββ < ⨆ (n : ), (↑(n + 2) - 1) / (2 * ↑(n + 2))Unhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : NNReal) => Y x ω) U
    theorem ProbabilityTheory.memHolder_brownian (ω : NNReal) (t β : NNReal) (hβ_pos : 0 < β) (hβ_lt : β < 2⁻¹) :
    Unhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : NNReal) => brownian x ω) U
    theorem ProbabilityTheory.iIndepFun_iff_charFun_eq_pi {ι : Type u_1} {Ω : Type u_2} [Fintype ι] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace (E i)] [(i : ι) → MeasurableSpace (E i)] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {X : (i : ι) → ΩE i} [∀ (i : ι), CompleteSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] (mX : ∀ (i : ι), AEMeasurable (X i) μ) :
    iIndepFun X μ ∀ (t : WithLp 2 ((x : ι) → E x)), MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ) t = i : ι, MeasureTheory.charFun (MeasureTheory.Measure.map (X i) μ) (t i)
    theorem ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_eq_zero {ι : Type u_1} {Ω : Type u_2} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure P] {X : ιΩ} [h1 : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (h2 : ∀ (i j : ι), i jcovariance (X i) (X j) P = 0) :
    def ProbabilityTheory.HasIndepIncrements {Ω : Type u_1} {T : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [Sub E] [Preorder T] [MeasurableSpace E] (X : TΩE) (P : MeasureTheory.Measure Ω) :

    A process X : T → Ω → E has independent increments if for any n ≥ 2 and t₁ ≤ ... ≤ tₙ, the random variables X t₂ - X t₁, ..., X tₙ - X tₙ₋₁ are independent.

    Equations
    Instances For
      theorem ProbabilityTheory.mem_pair_iff {α : Type u_1} [DecidableEq α] {x y z : α} :
      x {y, z} x = y x = z
      theorem ProbabilityTheory.isClosed_sUnion_of_finite {X : Type u_3} [TopologicalSpace X] {s : Set (Set X)} (h1 : s.Finite) (h2 : ts, IsClosed t) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For