Documentation

BrownianMotion.Gaussian.BrownianMotion

Brownian motion #

Indexing the elements of a finset in order #

noncomputable def Finset.ofFin {T : Type u_1} [LinearOrder T] (I : Finset T) (i : Fin I.card) :
T

Given a finite set I : Finset T of cardinality n, ofFin : Fin #I → T is the map (t₁, ..., tₙ), where t₁ < ... < tₙ are the elements of I.

Equations
Instances For
    theorem Finset.ofFin_mem {T : Type u_1} [LinearOrder T] (I : Finset T) (i : Fin I.card) :
    I.ofFin i I
    noncomputable def Finset.toFin {T : Type u_1} [LinearOrder T] (I : Finset T) (i : I) :

    Given a finite set I : Finset T, and t : I, I.toFin t returns the position of t in I.

    Equations
    Instances For
      @[simp]
      theorem Finset.ofFin_toFin {T : Type u_1} [LinearOrder T] (I : Finset T) (i : I) :
      I.ofFin (I.toFin i) = i
      @[simp]
      theorem Finset.toFin_ofFin {T : Type u_1} [LinearOrder T] (I : Finset T) (i : Fin I.card) :
      I.toFin I.ofFin i, = i
      noncomputable def Finset.ofFin' {T : Type u_1} [LinearOrder T] (I : Finset T) [Bot T] (i : Fin (I.card + 1)) :
      T

      Given a finite set I : Finset T of cardinality n, ofFin' : Fin (#I + 1) → T is the map (⊥, t₁, ..., tₙ), where t₁ < ... < tₙ are the elements of I.

      Equations
      Instances For
        @[simp]
        theorem Finset.ofFin'_zero {T : Type u_1} [LinearOrder T] (I : Finset T) [Bot T] :
        theorem Finset.ofFin'_of_ne_zero {T : Type u_1} [LinearOrder T] (I : Finset T) [Bot T] (i : Fin (I.card + 1)) (hi : i 0) :
        I.ofFin' i = I.ofFin (i.pred hi)
        @[simp]
        theorem Finset.ofFin'_succ {T : Type u_1} [LinearOrder T] (I : Finset T) [Bot T] (i : Fin I.card) :
        I.ofFin' i.succ = I.ofFin i
        theorem Finset.ofFin'_mem {T : Type u_1} [LinearOrder T] (I : Finset T) [Bot T] (i : Fin (I.card + 1)) (hi : i 0) :
        I.ofFin' i I

        Independent increments #

        def ProbabilityTheory.HasIndepIncrements {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [Preorder T] [Sub E] [MeasurableSpace E] (X : TΩE) (P : MeasureTheory.Measure Ω) :

        A process X : T → Ω → E has independent increments if for any n ≥ 1 and t₁ ≤ ... ≤ tₙ, the random variables X t₂ - X t₁, ..., X tₙ - X tₙ₋₁ are independent.

        Equations
        Instances For
          noncomputable def ProbabilityTheory.incrementsToRestrict {T : Type u_1} {E : Type u_3} [LinearOrder T] (R : Type u_4) [Semiring R] [AddCommMonoid E] [Module R E] [TopologicalSpace E] [ContinuousAdd E] (I : Finset T) :
          (Fin I.cardE) →L[R] IE

          incrementsToRestrict I is a continuous linear map f such that f (xₜ₁, xₜ₂ - xₜ₁, ..., xₜₙ - xₜₙ₋₁) = (xₜ₁, ..., xₜₙ).

          Equations
          Instances For
            theorem ProbabilityTheory.incrementsToRestrict_increments_ofFin'_ae_eq_restrict {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder T] (R : Type u_4) [OrderBot T] [Semiring R] [AddCommGroup E] [Module R E] [TopologicalSpace E] [ContinuousAdd E] {X : TΩE} (h : ∀ᵐ (ω : Ω) P, X ω = 0) (I : Finset T) :
            (fun (ω : Ω) => I.restrict fun (x : T) => X x ω) =ᵐ[P] (incrementsToRestrict R I) fun (ω : Ω) (i : Fin I.card) => X (I.ofFin' i.succ) ω - X (I.ofFin' i.castSucc) ω
            theorem ProbabilityTheory.HasIndepIncrements.indepFun_sub_sub {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Preorder T] [MeasurableSpace E] [AddGroup E] {X : TΩE} (h : HasIndepIncrements X P) {r s t : T} (hrs : r s) (hst : s t) :
            IndepFun (X s - X r) (X t - X s) P
            theorem ProbabilityTheory.HasIndepIncrements.indepFun_eval_sub {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Preorder T] [MeasurableSpace E] [AddGroup E] {X : TΩE} (h : HasIndepIncrements X P) {r s t : T} (hrs : r s) (hst : s t) (hX : ∀ᵐ (ω : Ω) P, X r ω = 0) :
            IndepFun (X s) (X t - X s) P
            theorem ProbabilityTheory.HasIndepIncrements.isGaussianProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder T] [OrderBot T] [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {X : TΩE} (law : ∀ (t : T), HasGaussianLaw (X t) P) (h_bot : ∀ᵐ (ω : Ω) P, X ω = 0) (incr : HasIndepIncrements X P) :

            A stochastic process X with independent increments and such that X t is gaussian for all t is a Gaussian process.

            class ProbabilityTheory.IsPreBrownian {Ω : Type u_2} { : MeasurableSpace Ω} (X : NNRealΩ) (P : MeasureTheory.Measure Ω := by volume_tac) :

            A stochastic process is called pre-Brownian if its finite-dimensional laws are those of a Brownian motion, see gaussianProjectiveFamily.

            Instances
              theorem ProbabilityTheory.IsPreBrownian.congr {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} {Y : NNRealΩ} [hX : IsPreBrownian X P] (h : ∀ (t : NNReal), X t =ᵐ[P] Y t) :
              theorem ProbabilityTheory.IsPreBrownian.hasLaw_gaussianLimit {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [IsPreBrownian X P] (hX : AEMeasurable (fun (ω : Ω) (x : NNReal) => X x ω) P) :
              HasLaw (fun (ω : Ω) (x : NNReal) => X x ω) gaussianLimit P
              theorem ProbabilityTheory.HasLaw.isPreBrownian {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} (hX : HasLaw (fun (ω : Ω) (x : NNReal) => X x ω) gaussianLimit P) :
              theorem ProbabilityTheory.IsPreBrownian.hasLaw_eval {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (t : NNReal) :
              HasLaw (X t) (gaussianReal 0 t) P
              theorem ProbabilityTheory.IsPreBrownian.hasLaw_sub {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [IsPreBrownian X P] (s t : NNReal) :
              HasLaw (X s - X t) (gaussianReal 0 (max (s - t) (t - s))) P
              theorem ProbabilityTheory.IsPreBrownian.integral_eval {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (t : NNReal) :
              (x : Ω), X t x P = 0
              theorem ProbabilityTheory.IsPreBrownian.covariance_eval {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (s t : NNReal) :
              covariance (X s) (X t) P = (min s t)
              theorem ProbabilityTheory.IsPreBrownian.covariance_fun_eval {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (s t : NNReal) :
              covariance (fun (ω : Ω) => X s ω) (fun (ω : Ω) => X t ω) P = (min s t)
              theorem ProbabilityTheory.IsPreBrownian.isAEKolmogorovProcess {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} {n : } (hn : 0 < n) [h : IsPreBrownian X P] :
              IsAEKolmogorovProcess X P (2 * n) n (2 * n - 1).doubleFactorial
              theorem ProbabilityTheory.IsPreBrownian.exists_continuous_modification {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] :
              ∃ (Y : NNRealΩ), (∀ (t : NNReal), Measurable (Y t)) (∀ (t : NNReal), Y t =ᵐ[P] X t) ∀ (ω : Ω) (t β : NNReal), 0 < ββ < ⨆ (n : ), (↑(n + 2) - 1) / (2 * ↑(n + 2))Unhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : NNReal) => Y x ω) U

              If X is a pre-Brownian process then there exists a modification of X which is measurable and locally β-Hölder for 0 < β < 1/2 (and thus continuous). See IsPreBrownian.mk.

              noncomputable def ProbabilityTheory.IsPreBrownian.mk {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} (X : NNRealΩ) [h : IsPreBrownian X P] :
              NNRealΩ

              If h : IsPreBrownian X P, then h.mk X is a continuous modification of X.

              Equations
              Instances For
                theorem ProbabilityTheory.IsPreBrownian.memHolder_mk {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (ω : Ω) (t β : NNReal) (hβ_pos : 0 < β) (hβ_lt : β < 2⁻¹) :
                Unhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : NNReal) => IsPreBrownian.mk X x ω) U
                theorem ProbabilityTheory.IsPreBrownian.mk_ae_eq {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (t : NNReal) :
                theorem ProbabilityTheory.IsPreBrownian.continuous_mk {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (ω : Ω) :
                Continuous fun (x : NNReal) => IsPreBrownian.mk X x ω
                theorem ProbabilityTheory.IsGaussianProcess.isPreBrownian_of_covariance {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} (h1 : IsGaussianProcess X P) (h2 : ∀ (t : NNReal), (x : Ω), X t x P = 0) (h3 : ∀ (s t : NNReal), s tcovariance (X s) (X t) P = s) :
                theorem ProbabilityTheory.HasIndepIncrements.isPreBrownian_of_hasLaw {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} (law : ∀ (t : NNReal), HasLaw (X t) (gaussianReal 0 t) P) (incr : HasIndepIncrements X P) :
                theorem ProbabilityTheory.IsPreBrownian.smul {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [IsPreBrownian X P] {c : NNReal} (hc : c 0) :
                IsPreBrownian (fun (t : NNReal) (ω : Ω) => X (c * t) ω / c) P
                theorem ProbabilityTheory.IsPreBrownian.shift {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (t₀ : NNReal) :
                IsPreBrownian (fun (t : NNReal) (ω : Ω) => X (t₀ + t) ω - X t₀ ω) P

                Weak Markov property: If X is a pre-Brownian motion, then X (t₀ + t) - X t₀ is a pre-Brownian motion which is independent from (B t, t ≤ t₀). This is the proof that it is pre-Brownian, see IsPreBrownian.indepFun_shift for independence.

                theorem ProbabilityTheory.IsPreBrownian.indepFun_shift {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] (hX : ∀ (t : NNReal), Measurable (X t)) (t₀ : NNReal) :
                IndepFun (fun (ω : Ω) (t : NNReal) => X (t₀ + t) ω - X t₀ ω) (fun (ω : Ω) (t : (Set.Iic t₀)) => X (↑t) ω) P

                Weak Markov property: If X is a pre-Brownian motion, then X (t₀ + t) - X t₀ is a pre-Brownian motion which is independent from (B t, t ≤ t₀). This is the proof that of independence, see IsPreBrownian.shift for the proof that it is pre-Brownian.

                theorem ProbabilityTheory.IsPreBrownian.inv {Ω : Type u_2} { : MeasurableSpace Ω} {X : NNRealΩ} {P : MeasureTheory.Measure Ω} [h : IsPreBrownian X P] :
                IsPreBrownian (fun (t : NNReal) (ω : Ω) => t * X (1 / t) ω) P
                class ProbabilityTheory.IsBrownian {Ω : Type u_2} { : MeasurableSpace Ω} (X : NNRealΩ) (P : MeasureTheory.Measure Ω := by volume_tac) extends ProbabilityTheory.IsPreBrownian X P :

                A stochastic process is called Brownian if its finite-dimensional laws are those of a Brownian motion, see IsPreBrownian, and if it has almost-sure continuous paths.

                Instances
                  theorem ProbabilityTheory.IsBrownian.smul {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : NNRealΩ} [h : IsBrownian X P] {c : NNReal} (hc : c 0) :
                  IsBrownian (fun (t : NNReal) (ω : Ω) => X (c * t) ω / c) P
                  theorem ProbabilityTheory.IsBrownian.shift {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : NNRealΩ} [h : IsBrownian X P] (t₀ : NNReal) :
                  IsBrownian (fun (t : NNReal) (ω : Ω) => X (t₀ + t) ω - X t₀ ω) P
                  theorem ProbabilityTheory.IsBrownian.inv {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : NNRealΩ} [h : IsBrownian X P] :
                  IsBrownian (fun (t : NNReal) (ω : Ω) => t * X (1 / t) ω) P

                  If X is a Brownian motion then so is fun t ω ↦ t * (B (1 / t) ω).

                  theorem ProbabilityTheory.IsBrownian.tendsto_nhds_zero {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : NNRealΩ} [h : IsBrownian X P] :
                  ∀ᵐ (ω : Ω) P, Filter.Tendsto (fun (x : NNReal) => X x ω) (nhds 0) (nhds 0)
                  theorem ProbabilityTheory.IsBrownian.tendsto_div_id_atTop {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : NNRealΩ} [h : IsBrownian X P] :
                  ∀ᵐ (ω : Ω) P, Filter.Tendsto (fun (t : NNReal) => X t ω / t) Filter.atTop (nhds 0)
                  Equations
                  Instances For
                    theorem ProbabilityTheory.memHolder_brownian (ω : NNReal) (t β : NNReal) (hβ_pos : 0 < β) (hβ_lt : β < 2⁻¹) :
                    Unhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : NNReal) => brownian x ω) U
                    theorem ProbabilityTheory.isClosed_sUnion_of_finite {X : Type u_6} [TopologicalSpace X] {s : Set (Set X)} (h1 : s.Finite) (h2 : ts, IsClosed t) :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For