Brownian motion #
Equations
- ProbabilityTheory.preBrownian t ω = ω t
Instances For
theorem
ProbabilityTheory.hasLaw_preBrownian :
HasLaw (fun (ω : NNReal → ℝ) (x : NNReal) => preBrownian x ω) gaussianLimit gaussianLimit
theorem
ProbabilityTheory.hasLaw_restrict_preBrownian
(I : Finset NNReal)
:
HasLaw (fun (ω : NNReal → ℝ) => I.restrict fun (x : NNReal) => preBrownian x ω) (gaussianProjectiveFamily I)
gaussianLimit
theorem
ProbabilityTheory.hasLaw_preBrownian_eval
(t : NNReal)
:
HasLaw (preBrownian t) (gaussianReal 0 t) gaussianLimit
theorem
ProbabilityTheory.hasLaw_preBrownian_sub
(s t : NNReal)
:
HasLaw (preBrownian s - preBrownian t) (gaussianReal 0 (max (s - t) (t - s))) gaussianLimit
theorem
ProbabilityTheory.isKolmogorovProcess_preBrownian
{n : ℕ}
(hn : 0 < n)
:
IsKolmogorovProcess preBrownian gaussianLimit (2 * ↑n) ↑n ↑(2 * n - 1).doubleFactorial
Instances For
theorem
ProbabilityTheory.continuous_brownian
(ω : NNReal → ℝ)
:
Continuous fun (x : NNReal) => brownian x ω
theorem
ProbabilityTheory.hasLaw_restrict_brownian
{I : Finset NNReal}
:
HasLaw (fun (ω : NNReal → ℝ) => I.restrict fun (x : NNReal) => brownian x ω) (gaussianProjectiveFamily I) gaussianLimit
theorem
ProbabilityTheory.hasLaw_brownian :
HasLaw (fun (ω : NNReal → ℝ) (x : NNReal) => brownian x ω) gaussianLimit gaussianLimit
theorem
ProbabilityTheory.hasLaw_brownian_eval
{t : NNReal}
:
HasLaw (brownian t) (gaussianReal 0 t) gaussianLimit
theorem
ProbabilityTheory.hasLaw_brownian_sub
{s t : NNReal}
:
HasLaw (brownian s - brownian t) (gaussianReal 0 (max (s - t) (t - s))) gaussianLimit
theorem
ProbabilityTheory.isKolmogorovProcess_brownian
{n : ℕ}
(hn : 0 < n)
:
IsKolmogorovProcess brownian gaussianLimit (2 * ↑n) ↑n ↑(2 * n - 1).doubleFactorial
theorem
ProbabilityTheory.iIndepFun_iff_charFun_eq_pi
{ι : Type u_1}
{Ω : Type u_2}
[Fintype ι]
{E : ι → Type u_3}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → InnerProductSpace ℝ (E i)]
[(i : ι) → MeasurableSpace (E i)]
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
{X : (i : ι) → Ω → E i}
[∀ (i : ι), CompleteSpace (E i)]
[∀ (i : ι), BorelSpace (E i)]
[∀ (i : ι), SecondCountableTopology (E i)]
(mX : ∀ (i : ι), AEMeasurable (X i) μ)
:
iIndepFun X μ ↔ ∀ (t : WithLp 2 ((x : ι) → E x)),
MeasureTheory.charFun (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ) t = ∏ i : ι, MeasureTheory.charFun (MeasureTheory.Measure.map (X i) μ) (t i)
theorem
ProbabilityTheory.HasGaussianLaw.iIndepFun_of_covariance_eq_zero
{ι : Type u_1}
{Ω : Type u_2}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure P]
{X : ι → Ω → ℝ}
[h1 : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P]
(h2 : ∀ (i j : ι), i ≠ j → covariance (X i) (X j) P = 0)
:
iIndepFun X P
def
ProbabilityTheory.HasIndepIncrements
{Ω : Type u_1}
{T : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
[Sub E]
[Preorder T]
[MeasurableSpace E]
(X : T → Ω → E)
(P : MeasureTheory.Measure Ω)
:
A process X : T → Ω → E
has independent increments if for any n ≥ 2
and t₁ ≤ ... ≤ tₙ
,
the random variables X t₂ - X t₁, ..., X tₙ - X tₙ₋₁
are independent.
Equations
Instances For
noncomputable def
ProbabilityTheory.wienerMeasureAux :
MeasureTheory.Measure { f : NNReal → ℝ // Continuous f }
Equations
- ProbabilityTheory.wienerMeasureAux = MeasureTheory.Measure.map (fun (ω : NNReal → ℝ) => ⟨fun (t : NNReal) => ProbabilityTheory.brownian t ω, ⋯⟩) ProbabilityTheory.gaussianLimit
Instances For
instance
ProbabilityTheory.instMeasurableSpaceContinuousMap_brownianMotion
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
:
instance
ProbabilityTheory.instBorelSpaceContinuousMap_brownianMotion
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
:
BorelSpace C(X, Y)
theorem
ProbabilityTheory.isClosed_sUnion_of_finite
{X : Type u_3}
[TopologicalSpace X]
{s : Set (Set X)}
(h1 : s.Finite)
(h2 : ∀ t ∈ s, IsClosed t)
:
theorem
ProbabilityTheory.ContinuousMap.borel_eq_iSup_comap_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
:
theorem
ProbabilityTheory.ContinuousMap.measurableSpace_eq_iSup_comap_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
:
theorem
ProbabilityTheory.ContinuousMap.measurable_iff_eval
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{α : Type u_3}
[MeasurableSpace α]
[SecondCountableTopology X]
[SecondCountableTopology Y]
[LocallyCompactSpace X]
[RegularSpace Y]
[MeasurableSpace Y]
[BorelSpace Y]
(g : α → C(X, Y))
: