Documentation

Mathlib.Probability.Process.Kolmogorov

Stochastic processes satisfying the Kolmogorov condition #

A stochastic process X : T → Ω → E on an index space T and a measurable space Ω with measure P is said to satisfy the Kolmogorov condition with exponents p, q and constant M if for all s, t : T, the pair (X s, X t) is measurable for the Borel sigma-algebra on E × E and the following condition holds: ∫⁻ ω, edist (X s ω) (X t ω) ^ p ∂P ≤ M * edist s t ^ q.

This condition is the main assumption of the Kolmogorov-Chentsov theorem, which gives the existence of a continuous modification of the process.

The measurability condition on pairs ensures that the distance edist (X s ω) (X t ω) is measurable in ω for fixed s, t. In a space with second-countable topology, the measurability of pairs can be obtained from measurability of each X t.

Main definitions #

Main statements #

structure ProbabilityTheory.IsKolmogorovProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] (X : TΩE) (P : MeasureTheory.Measure Ω) (p q : ) (M : NNReal) :

A stochastic process X : T → Ω → E on an index space T and a measurable space Ω with measure P is said to satisfy the Kolmogorov condition with exponents p, q and constant M if for all s, t : T, the pair (X s, X t) is measurable for the Borel sigma-algebra on E × E and the following condition holds: ∫⁻ ω, edist (X s ω) (X t ω) ^ p ∂P ≤ M * edist s t ^ q.

Instances For
    def ProbabilityTheory.IsAEKolmogorovProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] (X : TΩE) (P : MeasureTheory.Measure Ω) (p q : ) (M : NNReal) :

    Property of being a modification of a stochastic process that satisfies the Kolmogorov condition (IsKolmogorovProcess).

    Equations
    Instances For
      noncomputable def ProbabilityTheory.IsAEKolmogorovProcess.mk {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} (X : TΩE) (h : IsAEKolmogorovProcess X P p q M) :
      TΩE

      A process with the property IsKolmogorovProcess such that ∀ t, X t =ᵐ[P] h.mk X t.

      Equations
      Instances For
        theorem ProbabilityTheory.IsAEKolmogorovProcess.ae_eq_mk {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (h : IsAEKolmogorovProcess X P p q M) (t : T) :
        theorem ProbabilityTheory.IsAEKolmogorovProcess.kolmogorovCondition {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) (s t : T) :
        ∫⁻ (ω : Ω), edist (X s ω) (X t ω) ^ p P M * edist s t ^ q
        theorem ProbabilityTheory.IsAEKolmogorovProcess.p_pos {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) :
        0 < p
        theorem ProbabilityTheory.IsAEKolmogorovProcess.q_pos {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) :
        0 < q
        theorem ProbabilityTheory.IsAEKolmogorovProcess.congr {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X Y : TΩE} (hX : IsAEKolmogorovProcess X P p q M) (h : ∀ (t : T), X t =ᵐ[P] Y t) :
        theorem ProbabilityTheory.IsKolmogorovProcess.stronglyMeasurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {s t : T} :
        MeasureTheory.StronglyMeasurable fun (ω : Ω) => edist (X s ω) (X t ω)
        theorem ProbabilityTheory.IsAEKolmogorovProcess.aestronglyMeasurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) {s t : T} :
        MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
        theorem ProbabilityTheory.IsKolmogorovProcess.measurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {s t : T} :
        Measurable fun (ω : Ω) => edist (X s ω) (X t ω)
        theorem ProbabilityTheory.IsAEKolmogorovProcess.aemeasurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) {s t : T} :
        AEMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
        theorem ProbabilityTheory.IsKolmogorovProcess.measurable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} [MeasurableSpace E] [BorelSpace E] (hX : IsKolmogorovProcess X P p q M) (s : T) :
        theorem ProbabilityTheory.IsAEKolmogorovProcess.aemeasurable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} [MeasurableSpace E] [BorelSpace E] (hX : IsAEKolmogorovProcess X P p q M) (s : T) :
        AEMeasurable (X s) P
        theorem ProbabilityTheory.IsKolmogorovProcess.mk_of_secondCountableTopology {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] (h_meas : ∀ (s : T), Measurable (X s)) (h_kol : ∀ (s t : T), ∫⁻ (ω : Ω), edist (X s ω) (X t ω) ^ p P M * edist s t ^ q) (hp : 0 < p) (hq : 0 < q) :
        theorem ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q M) {s t : T} (h : edist s t = 0) :
        ∀ᵐ (ω : Ω) P, edist (X s ω) (X t ω) = 0
        theorem ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {s t : T} (h : edist s t = 0) :
        ∀ᵐ (ω : Ω) P, edist (X s ω) (X t ω) = 0
        theorem ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero_of_const_eq_zero {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsAEKolmogorovProcess X P p q 0) (s t : T) :
        ∀ᵐ (ω : Ω) P, edist (X s ω) (X t ω) = 0
        theorem ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero_of_const_eq_zero {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q : } {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q 0) (s t : T) :
        ∀ᵐ (ω : Ω) P, edist (X s ω) (X t ω) = 0