Kolmogorov-Chentsov theorem #
def
ProbabilityTheory.constL
(T : Type u_4)
[PseudoEMetricSpace T]
(c : ENNReal)
(d p q β : NNReal)
:
Equations
- ProbabilityTheory.constL T c d p q β = sorry
Instances For
theorem
ProbabilityTheory.constL_lt_top
{T : Type u_1}
[PseudoEMetricSpace T]
{c : ENNReal}
{d p q β : NNReal}
:
theorem
ProbabilityTheory.finite_kolmogorov_chentsov
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{X : T → Ω → E}
{c : ENNReal}
{d p q M β : NNReal}
{P : MeasureTheory.Measure Ω}
(hT : HasBoundedInternalCoveringNumber Set.univ c d)
(hX : IsKolmogorovProcess X P p q M)
(hd_pos : 0 < d)
(hp_pos : 0 < p)
(hdq_lt : d < q)
(hβ_pos : 0 < β)
(hβ_lt : β < (q - d) / p)
(T' : Set T)
(hT' : T'.Finite)
:
theorem
ProbabilityTheory.countable_kolmogorov_chentsov
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{X : T → Ω → E}
{c : ENNReal}
{d p q M β : NNReal}
{P : MeasureTheory.Measure Ω}
(hT : HasBoundedInternalCoveringNumber Set.univ c d)
(hX : IsKolmogorovProcess X P p q M)
(hd_pos : 0 < d)
(hp_pos : 0 < p)
(hdq_lt : d < q)
(hβ_pos : 0 < β)
(hβ_lt : β < (q - d) / p)
(T' : Set T)
(hT' : T'.Countable)
: