Documentation

BrownianMotion.Continuity.KolmogorovChentsov

Kolmogorov-Chentsov theorem #

Equations
Instances For
    theorem ProbabilityTheory.constL_lt_top {T : Type u_1} [PseudoEMetricSpace T] {c : ENNReal} {d p q β : NNReal} :
    constL T c d p q β <
    theorem ProbabilityTheory.finite_kolmogorov_chentsov {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {X : TΩE} {c : ENNReal} {d p q M β : NNReal} {P : MeasureTheory.Measure Ω} (hT : HasBoundedInternalCoveringNumber Set.univ c d) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hp_pos : 0 < p) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) (T' : Set T) (hT' : T'.Finite) :
    ∫⁻ (ω : Ω), ⨆ (s : T), ⨆ (t : T), ⨆ (_ : s T'), ⨆ (_ : t T'), edist (X s ω) (X t ω) ^ p / edist s t ^ (β * p) P M * constL T c d p q β
    theorem ProbabilityTheory.countable_kolmogorov_chentsov {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {X : TΩE} {c : ENNReal} {d p q M β : NNReal} {P : MeasureTheory.Measure Ω} (hT : HasBoundedInternalCoveringNumber Set.univ c d) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hp_pos : 0 < p) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) (T' : Set T) (hT' : T'.Countable) :
    ∫⁻ (ω : Ω), ⨆ (s : T), ⨆ (t : T), ⨆ (_ : s T'), ⨆ (_ : t T'), edist (X s ω) (X t ω) ^ p / edist s t ^ (β * p) P M * constL T c d p q β