Documentation

BrownianMotion.Continuity.KolmogorovChentsov

Kolmogorov-Chentsov theorem #

theorem UniformContinuousOn.exists_tendsto {α : Type u_1} {β : Type u_2} [UniformSpace α] [FirstCountableTopology α] [UniformSpace β] [CompleteSpace β] {s t : Set α} (hs : Dense s) (ht : IsOpen t) {f : sβ} (hf : UniformContinuousOn f {x : s | x t}) (a : α) (ha : a t) :
∃ (c : β), Filter.Tendsto f (Filter.comap Subtype.val (nhds a)) (nhds c)
theorem Dense.holderOnWith_extend {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] [CompleteSpace Y] {C r : NNReal} {s : Set X} {f : sY} {U : Set X} (hU : IsOpen U) (hs : Dense s) (hf : HolderOnWith C r f {x : s | x U}) (hr : 0 < r) :
HolderOnWith C r (hs.extend f) U
theorem UniformContinuous.exists_tendsto {α : Type u_1} {β : Type u_2} [UniformSpace α] [FirstCountableTopology α] [UniformSpace β] [CompleteSpace β] {s : Set α} {f : sβ} (hf : UniformContinuous f) (a : α) (has : a closure s) :
∃ (c : β), Filter.Tendsto f (Filter.comap Subtype.val (nhds a)) (nhds c)
theorem measurable_limUnder_of_exists_tendsto {ι : Type u_1} {X : Type u_2} {E : Type u_3} {mX : MeasurableSpace X} [TopologicalSpace E] [TopologicalSpace.PseudoMetrizableSpace E] [MeasurableSpace E] [BorelSpace E] {l : Filter ι} [l.IsCountablyGenerated] {f : ιXE} [hE : Nonempty E] (h_conv : ∀ (x : X), ∃ (c : E), Filter.Tendsto (fun (x_1 : ι) => f x_1 x) l (nhds c)) (hf : ∀ (i : ι), Measurable (f i)) :
Measurable fun (x : X) => limUnder l fun (x_1 : ι) => f x_1 x
theorem measurable_limUnder {ι : Type u_1} {X : Type u_2} {E : Type u_3} [MeasurableSpace X] [TopologicalSpace E] [PolishSpace E] [MeasurableSpace E] [BorelSpace E] [Countable ι] {l : Filter ι} [l.IsCountablyGenerated] {f : ιXE} [hE : Nonempty E] (hf : ∀ (i : ι), Measurable (f i)) :
Measurable fun (x : X) => limUnder l fun (x_1 : ι) => f x_1 x
theorem limUnder_prod {α : Type u_1} {β : Type u_2} {X : Type u_3} {Y : Type u_4} [TopologicalSpace X] [TopologicalSpace Y] [Nonempty X] [Nonempty Y] [T2Space X] [T2Space Y] {f : Filter α} {f' : Filter β} [f.NeBot] [f'.NeBot] {g : αX} {g' : βY} (h₁ : ∃ (x : X), Filter.Tendsto g f (nhds x)) (h₂ : ∃ (x' : Y), Filter.Tendsto g' f' (nhds x')) :
(limUnder (f ×ˢ f') fun (x : α × β) => (g x.1, g' x.2)) = (limUnder f g, limUnder f' g')
def ProbabilityTheory.holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] [EMetricSpace E] (X : TΩE) (T' : Set T) (p β : ) (U : Set T) :
Set Ω

A set on which the process is Hölder continuous.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.IsKolmogorovProcess.measurableSet_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] (hX : IsKolmogorovProcess X P p q M) {T' : Set T} (hT' : T'.Countable) :
    MeasurableSet (holderSet X T' p (↑β) U)
    theorem ProbabilityTheory.holderOnWith_of_mem_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} {X : TΩE} {c : ENNReal} {d p : } {β : NNReal} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hd_pos : 0 < d) (hp_pos : 0 < p) (hβ_pos : 0 < β) {T' : Set T} {ω : Ω} ( : ω holderSet X T' p (↑β) U) :
    HolderOnWith ((fun (ω : Ω) => ⨆ (s : ↑(T' U)), ⨆ (t : ↑(T' U)), edist (X (↑s) ω) (X (↑t) ω) ^ p / edist s t ^ (β * p)) ω ^ p⁻¹).toNNReal β (fun (t : T') => X (↑t) ω) {t' : T' | t' U}
    theorem ProbabilityTheory.uniformContinuousOn_of_mem_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} {X : TΩE} {c : ENNReal} {d p : } {β : NNReal} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hd_pos : 0 < d) (hp_pos : 0 < p) (hβ_pos : 0 < β) {T' : Set T} {ω : Ω} ( : ω holderSet X T' p (↑β) U) :
    UniformContinuousOn (fun (t : T') => X (↑t) ω) {x : T' | x U}
    theorem ProbabilityTheory.continuousOn_of_mem_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} {X : TΩE} {c : ENNReal} {d p : } {β : NNReal} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hd_pos : 0 < d) (hp_pos : 0 < p) (hβ_pos : 0 < β) {T' : Set T} {ω : Ω} ( : ω holderSet X T' p (↑β) U) :
    ContinuousOn (fun (t : T') => X (↑t) ω) {x : T' | x U}
    theorem ProbabilityTheory.exists_tendsto_of_mem_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} {X : TΩE} {c : ENNReal} {d p : } {β : NNReal} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [CompleteSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hU : IsOpen U) (hd_pos : 0 < d) (hp_pos : 0 < p) (hβ_pos : 0 < β) {T' : Set T} (hT'_dense : Dense T') {ω : Ω} ( : ω holderSet X T' p (↑β) U) (t : T) (htU : t U) :
    ∃ (c : E), Filter.Tendsto (fun (t' : T') => X (↑t') ω) (Filter.comap Subtype.val (nhds t)) (nhds c)
    theorem ProbabilityTheory.ae_mem_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [MeasurableSpace E] [BorelSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) {T' : Set T} (hT'_countable : T'.Countable) :
    ∀ᵐ (ω : Ω) P, ω holderSet X T' p (↑β) U
    theorem ProbabilityTheory.IsKolmogorovProcess.tendstoInMeasure {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] (hX : IsKolmogorovProcess X P p q M) (hq_pos : 0 < q) {T' : Set T} {u : T'} {t : T} (hu : Filter.Tendsto (fun (n : ) => (u n)) Filter.atTop (nhds t)) :
    MeasureTheory.TendstoInMeasure P (fun (n : ) => X (u n)) Filter.atTop (X t)
    noncomputable def ProbabilityTheory.indicatorProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [hE : Nonempty E] (X : TΩE) (A : Set Ω) :
    TΩE

    Process where we replace the values for ω outside of A with a constant value.

    Equations
    Instances For
      @[simp]
      theorem ProbabilityTheory.indicatorProcess_apply {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [hE : Nonempty E] (X : TΩE) (A : Set Ω) (t : T) (ω : Ω) [Decidable (ω A)] :
      indicatorProcess X A t ω = if ω A then X t ω else hE.some
      theorem ProbabilityTheory.measurable_indicatorProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} [hE : Nonempty E] {A : Set Ω} [MeasurableSpace E] (hA : MeasurableSet A) (hX : ∀ (t : T), Measurable (X t)) (t : T) :
      theorem ProbabilityTheory.measurable_pair_indicatorProcess {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [EMetricSpace E] [hE : Nonempty E] {T₁ : Type u_4} {T₂ : Type u_5} [MeasurableSpace E] [BorelSpace E] {X₁ : T₁ΩE} {X₂ : T₂ΩE} (hX₁ : ∀ (t : T₁), Measurable (X₁ t)) (hX₂ : ∀ (t : T₂), Measurable (X₂ t)) (hX₁₂ : ∀ (i : T₁) (j : T₂), Measurable fun (ω : Ω) => (X₁ i ω, X₂ j ω)) {A₁ A₂ : Set Ω} (hA₁ : MeasurableSet A₁) (hA₂ : MeasurableSet A₂) (s : T₁) (t : T₂) :
      Measurable fun (ω : Ω) => (indicatorProcess X₁ A₁ s ω, indicatorProcess X₂ A₂ t ω)
      theorem ProbabilityTheory.measurable_edist_indicatorProcess {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [EMetricSpace E] [hE : Nonempty E] {T₁ : Type u_4} {T₂ : Type u_5} [MeasurableSpace E] [BorelSpace E] {X₁ : T₁ΩE} {X₂ : T₂ΩE} (hX₁ : ∀ (t : T₁), Measurable (X₁ t)) (hX₂ : ∀ (t : T₂), Measurable (X₂ t)) (hX₁₂ : ∀ (i : T₁) (j : T₂), Measurable fun (ω : Ω) => (X₁ i ω, X₂ j ω)) {A₁ A₂ : Set Ω} (hA₁ : MeasurableSet A₁) (hA₂ : MeasurableSet A₂) (s : T₁) (t : T₂) :
      Measurable fun (ω : Ω) => edist (indicatorProcess X₁ A₁ s ω) (indicatorProcess X₂ A₂ t ω)
      theorem ProbabilityTheory.measurable_pair_limUnder_comap {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] {X₁ X₂ : TΩE} {T' : Set T} (hT'_dense : Dense T') (hX₁₂ : ∀ (i j : T), Measurable fun (ω : Ω) => (X₁ i ω, X₂ j ω)) (s t : T) (hX₁_tendsto : ∀ (ω : Ω), ∃ (x : E), Filter.Tendsto (fun (t' : T') => X₁ (↑t') ω) (Filter.comap Subtype.val (nhds s)) (nhds x)) (hX₂_tendsto : ∀ (ω : Ω), ∃ (x : E), Filter.Tendsto (fun (t' : T') => X₂ (↑t') ω) (Filter.comap Subtype.val (nhds t)) (nhds x)) :
      Measurable fun (ω : Ω) => (limUnder (Filter.comap Subtype.val (nhds s)) fun (t' : T') => X₁ (↑t') ω, limUnder (Filter.comap Subtype.val (nhds t)) fun (t' : T') => X₂ (↑t') ω)

      A countable dense subset of a second-countable topological space.

      Equations
      Instances For
        def ProbabilityTheory.IsLimitOfIndicator {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [SecondCountableTopology T] (Y X : TΩE) (P : MeasureTheory.Measure Ω) (U : Set T) :

        A class of processes built from an other. Used to ensure measurability.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem ProbabilityTheory.measurable_pair_limUnder_indicatorProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology T] {X X' : TΩE} (hX : ∀ (t : T), Measurable (X t)) (hX' : ∀ (t : T), Measurable (X' t)) (hX_pair : ∀ (i j : T), Measurable fun (ω : Ω) => (X i ω, X' j ω)) {A₁ A₂ : Set Ω} (hA₁ : MeasurableSet A₁) (hA₂ : MeasurableSet A₂) (s t : T) (h_tendsto₁ : ωA₁, ∃ (c : E), Filter.Tendsto (fun (t' : (denseCountable T)) => X (↑t') ω) (Filter.comap Subtype.val (nhds s)) (nhds c)) (h_tendsto₂ : ωA₂, ∃ (c : E), Filter.Tendsto (fun (t' : (denseCountable T)) => X' (↑t') ω) (Filter.comap Subtype.val (nhds t)) (nhds c)) :
          Measurable fun (ω : Ω) => (limUnder (Filter.comap Subtype.val (nhds s)) fun (t' : (denseCountable T)) => indicatorProcess X A₁ (↑t') ω, limUnder (Filter.comap Subtype.val (nhds t)) fun (t' : (denseCountable T)) => indicatorProcess X' A₂ (↑t') ω)
          theorem ProbabilityTheory.IsLimitOfIndicator.measurable_pair {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology T] {Y X Z X' : TΩE} {U₁ U₂ : Set T} (hX : ∀ (t : T), Measurable (X t)) (hX' : ∀ (t : T), Measurable (X' t)) (hX_pair : ∀ (i j : T), Measurable fun (ω : Ω) => (X i ω, X' j ω)) (hY : IsLimitOfIndicator Y X P U₁) (hZ : IsLimitOfIndicator Z X' P U₂) (s t : T) :
          Measurable fun (ω : Ω) => (Y s ω, Z t ω)
          theorem ProbabilityTheory.IsLimitOfIndicator.measurable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology T] {Y X : TΩE} (hX : ∀ (t : T), Measurable (X t)) (hY : IsLimitOfIndicator Y X P U) (t : T) :
          theorem ProbabilityTheory.IsLimitOfIndicator.measurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology T] {Y X Z X' : TΩE} {U₁ U₂ : Set T} (hX : ∀ (t : T), Measurable (X t)) (hX' : ∀ (t : T), Measurable (X' t)) (hX_pair : ∀ (i j : T), Measurable fun (ω : Ω) => (X i ω, X' j ω)) (hY : IsLimitOfIndicator Y X P U₁) (hZ : IsLimitOfIndicator Z X' P U₂) (s t : T) :
          Measurable fun (ω : Ω) => edist (Y s ω) (Z t ω)
          theorem ProbabilityTheory.IsLimitOfIndicator.indicatorProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [SecondCountableTopology T] {Y X : TΩE} (hY : IsLimitOfIndicator Y X P U) (A : Set Ω) (hA_meas : MeasurableSet A) (hA_ae : ∀ᵐ (ω : Ω) P, ω A) :
          noncomputable def ProbabilityTheory.holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [SecondCountableTopology T] (X : TΩE) (β : NNReal) (p : ) (U : Set T) [DecidablePred fun (x : T) => x U] :
          TΩE

          A Hölder continuous modification of a process X.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem ProbabilityTheory.isLimitOfIndicator_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) :
            theorem ProbabilityTheory.holderModification_eq {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) (hU : IsOpen U) [DecidablePred fun (x : T) => x U] (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hβ_pos : 0 < β) (t' : (denseCountable T)) (ht'U : t' U) {ω : Ω} ( : ω holderSet X (denseCountable T) p (↑β) U) :
            holderModification X β p U (↑t') ω = X (↑t') ω
            theorem ProbabilityTheory.exists_tendsto_indicatorProcess_holderSet {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [CompleteSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hβ_pos : 0 < β) {T' : Set T} (hT'_dense : Dense T') (t : T) (htU : t U) (ω : Ω) :
            ∃ (c : E), Filter.Tendsto (fun (x : T') => indicatorProcess X (holderSet X T' p (↑β) U) (↑x) ω) (Filter.comap Subtype.val (nhds t)) (nhds c)
            theorem ProbabilityTheory.measurable_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) (t : T) :
            theorem ProbabilityTheory.measurable_pair_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] {U₁ U₂ : Set T} [DecidablePred fun (x : T) => x U₁] [DecidablePred fun (x : T) => x U₂] (hU₁ : IsOpen U₁) (hU₂ : IsOpen U₂) {X₁ X₂ : TΩE} {c₁ c₂ : ENNReal} {p₁ p₂ q₁ q₂ d₁ d₂ : } {M₁ M₂ β₁ β₂ : NNReal} (hT₁ : HasBoundedInternalCoveringNumber U₁ c₁ d₁) (hT₂ : HasBoundedInternalCoveringNumber U₂ c₂ d₂) (hX₁ : IsKolmogorovProcess X₁ P p₁ q₁ M₁) (hX₂ : IsKolmogorovProcess X₂ P p₂ q₂ M₂) (hc₁ : c₁ ) (hc₂ : c₂ ) (hd₁_pos : 0 < d₁) (hd₂_pos : 0 < d₂) (hdq₁_lt : d₁ < q₁) (hdq₂_lt : d₂ < q₂) (hβ₁_pos : 0 < β₁) (hβ₂_pos : 0 < β₂) (hβ₁_lt : β₁ < (q₁ - d₁) / p₁) (hβ₂_lt : β₂ < (q₂ - d₂) / p₂) (hX₁₂ : ∀ (i j : T), Measurable fun (ω : Ω) => (X₁ i ω, X₂ j ω)) (s t : T) :
            Measurable fun (ω : Ω) => (holderModification X₁ β₁ p₁ U₁ s ω, holderModification X₂ β₂ p₂ U₂ t ω)
            theorem ProbabilityTheory.measurable_pair_holderModification_self {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) (s t : T) :
            Measurable fun (ω : Ω) => (holderModification X β p U s ω, holderModification X β p U t ω)
            theorem ProbabilityTheory.measurable_edist_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] {U₁ U₂ : Set T} [DecidablePred fun (x : T) => x U₁] [DecidablePred fun (x : T) => x U₂] (hU₁ : IsOpen U₁) (hU₂ : IsOpen U₂) {X₁ X₂ : TΩE} {c₁ c₂ : ENNReal} {p₁ p₂ q₁ q₂ d₁ d₂ : } {M₁ M₂ β₁ β₂ : NNReal} (hT₁ : HasBoundedInternalCoveringNumber U₁ c₁ d₁) (hT₂ : HasBoundedInternalCoveringNumber U₂ c₂ d₂) (hX₁ : IsKolmogorovProcess X₁ P p₁ q₁ M₁) (hX₂ : IsKolmogorovProcess X₂ P p₂ q₂ M₂) (hc₁ : c₁ ) (hc₂ : c₂ ) (hd₁_pos : 0 < d₁) (hd₂_pos : 0 < d₂) (hdq₁_lt : d₁ < q₁) (hdq₂_lt : d₂ < q₂) (hβ₁_pos : 0 < β₁) (hβ₂_pos : 0 < β₂) (hβ₁_lt : β₁ < (q₁ - d₁) / p₁) (hβ₂_lt : β₂ < (q₂ - d₂) / p₂) (hX₁₂ : ∀ (i j : T), Measurable fun (ω : Ω) => (X₁ i ω, X₂ j ω)) (s t : T) :
            Measurable fun (ω : Ω) => edist (holderModification X₁ β₁ p₁ U₁ s ω) (holderModification X₂ β₂ p₂ U₂ t ω)
            theorem ProbabilityTheory.measurable_edist_holderModification' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] {β₁ β₂ : NNReal} (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ₁_pos : 0 < β₁) (hβ₁_lt : β₁ < (q - d) / p) (hβ₂_pos : 0 < β₂) (hβ₂_lt : β₂ < (q - d) / p) (s t : T) :
            Measurable fun (ω : Ω) => edist (holderModification X β₁ p U s ω) (holderModification X β₂ p U t ω)
            theorem ProbabilityTheory.holderOnWith_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hβ_pos : 0 < β) (ω : Ω) :
            ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => holderModification X β p U x ω) U
            theorem ProbabilityTheory.uniformContinuousOn_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hβ_pos : 0 < β) (ω : Ω) :
            UniformContinuousOn (fun (t : T) => holderModification X β p U t ω) U
            theorem ProbabilityTheory.continuousOn_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [CompleteSpace E] [SecondCountableTopology T] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hβ_pos : 0 < β) (ω : Ω) :
            ContinuousOn (fun (t : T) => holderModification X β p U t ω) U
            theorem ProbabilityTheory.modification_holderModification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) (t : T) (htU : t U) :
            holderModification X β p U t =ᵐ[P] X t
            theorem ProbabilityTheory.exists_modification_holder_aux' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ tU, Y t =ᵐ[P] X t) (∀ (ω : Ω), ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U) IsLimitOfIndicator Y X P U
            theorem ProbabilityTheory.exists_modification_holder_aux {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsAEKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ tU, Y t =ᵐ[P] X t) ∀ (ω : Ω), ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U
            theorem ProbabilityTheory.StronglyMeasurable.measurableSet_eq_of_continuous {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace T] [EMetricSpace E] [SecondCountableTopology T] {f g : TΩE} (hf : ∀ (ω : Ω), Continuous fun (x : T) => f x ω) (hg : ∀ (ω : Ω), Continuous fun (x : T) => g x ω) (hf_meas : ∀ (t : T), MeasureTheory.StronglyMeasurable (f t)) (hg_meas : ∀ (t : T), MeasureTheory.StronglyMeasurable (g t)) :
            MeasurableSet {ω : Ω | ∀ (t : T), f t ω = g t ω}
            theorem ProbabilityTheory.Measurable.measurableSet_eq_of_continuous {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace T] [EMetricSpace E] [SecondCountableTopology T] {f g : TΩE} (hf : ∀ (ω : Ω), Continuous fun (x : T) => f x ω) (hg : ∀ (ω : Ω), Continuous fun (x : T) => g x ω) (h_meas : ∀ (t : T), Measurable fun (ω : Ω) => edist (f t ω) (g t ω)) :
            MeasurableSet {ω : Ω | ∀ (t : T), f t ω = g t ω}
            theorem ProbabilityTheory.Measurable.measurableSet_eqOn_of_continuous {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [SecondCountableTopology T] {f g : TΩE} (hU : IsOpen U) (hf : ∀ (ω : Ω), ContinuousOn (fun (x : T) => f x ω) U) (hg : ∀ (ω : Ω), ContinuousOn (fun (x : T) => g x ω) U) (h_meas : ∀ (t : T), Measurable fun (ω : Ω) => edist (f t ω) (g t ω)) :
            MeasurableSet {ω : Ω | tU, f t ω = g t ω}
            theorem ProbabilityTheory.exists_modification_holder'' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ tU, Y t =ᵐ[P] X t) (∀ (β : NNReal), 0 < ββ < (q - d) / p∀ (ω : Ω), ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U) IsLimitOfIndicator Y X P U
            theorem ProbabilityTheory.exists_modification_holder {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] (hT : HasBoundedInternalCoveringNumber U c d) [DecidablePred fun (x : T) => x U] (hU : IsOpen U) (hX : IsAEKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ tU, Y t =ᵐ[P] X t) ∀ (β : NNReal), 0 < ββ < (q - d) / p∀ (ω : Ω), ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U
            theorem ProbabilityTheory.exists_modification_holder''' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {d p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] {C : Set T} {c : ENNReal} (hC : IsCoverWithBoundedCoveringNumber C Set.univ c fun (x : ) => d) (hX : IsKolmogorovProcess X P p q M) (hc : ∀ (n : ), c n ) (hd_pos : 0 < d) (hdq_lt : d < q) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ (t : T), Y t =ᵐ[P] X t) (∀ (ω : Ω) (t : T), Unhds t, ∀ (β : NNReal), 0 < ββ < (q - d) / p∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U) IsLimitOfIndicator Y X P Set.univ
            theorem ProbabilityTheory.exists_modification_holder' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {d p q : } {M : NNReal} {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] {C : Set T} {c : ENNReal} (hC : IsCoverWithBoundedCoveringNumber C Set.univ c fun (x : ) => d) (hX : IsAEKolmogorovProcess X P p q M) (hc : ∀ (n : ), c n ) (hd_pos : 0 < d) (hdq_lt : d < q) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ (t : T), Y t =ᵐ[P] X t) ∀ (ω : Ω) (t : T), Unhds t, ∀ (β : NNReal), 0 < ββ < (q - d) / p∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U
            theorem ProbabilityTheory.exists_modification_holder_iSup' {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {d : } {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] {C : Set T} {c : ENNReal} {p q : } {M : NNReal} (hC : IsCoverWithBoundedCoveringNumber C Set.univ c fun (x : ) => d) (hX : ∀ (n : ), IsKolmogorovProcess X P (p n) (q n) (M n)) (hc : ∀ (n : ), c n ) (hd_pos : 0 < d) (hdq_lt : ∀ (n : ), d < q n) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ (t : T), Y t =ᵐ[P] X t) ∀ (ω : Ω) (t : T) (β : NNReal), 0 < ββ < ⨆ (n : ), (q n - d) / p nUnhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U
            theorem ProbabilityTheory.exists_modification_holder_iSup {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {d : } {P : MeasureTheory.Measure Ω} [PseudoEMetricSpace T] [EMetricSpace E] [hE : Nonempty E] [MeasurableSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology T] [MeasureTheory.IsFiniteMeasure P] {C : Set T} {c : ENNReal} {p q : } {M : NNReal} (hC : IsCoverWithBoundedCoveringNumber C Set.univ c fun (x : ) => d) (hX : ∀ (n : ), IsAEKolmogorovProcess X P (p n) (q n) (M n)) (hc : ∀ (n : ), c n ) (hd_pos : 0 < d) (hdq_lt : ∀ (n : ), d < q n) :
            ∃ (Y : TΩE), (∀ (t : T), Measurable (Y t)) (∀ (t : T), Y t =ᵐ[P] X t) ∀ (ω : Ω) (t : T) (β : NNReal), 0 < ββ < ⨆ (n : ), (q n - d) / p nUnhds t, ∃ (C : NNReal), HolderOnWith C β (fun (x : T) => Y x ω) U