Documentation

BrownianMotion.Gaussian.GaussianProcess

Gaussian processes #

class ProbabilityTheory.IsGaussianProcess {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} [MeasurableSpace E] [TopologicalSpace E] [AddCommMonoid E] [Module E] (X : TΩE) (P : MeasureTheory.Measure Ω := by volume_tac) :

A stochastic process is a Gaussian process if all its finite dimensional distributions are Gaussian.

Instances
    theorem ProbabilityTheory.IsGaussianProcess.aemeasurable {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [MeasurableSpace E] [TopologicalSpace E] [AddCommMonoid E] [Module E] [hX : IsGaussianProcess X P] (t : T) :
    AEMeasurable (X t) P
    theorem ProbabilityTheory.IsGaussianProcess.modification {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : TΩE} [MeasurableSpace E] [TopologicalSpace E] [AddCommMonoid E] [Module E] [IsGaussianProcess X P] (hXY : ∀ (t : T), X t =ᵐ[P] Y t) :
    instance ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_eval {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [IsGaussianProcess X P] (t : T) :
    instance ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_fun_sub {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [IsGaussianProcess X P] {s t : T} :
    HasGaussianLaw (fun (ω : Ω) => X s ω - X t ω) P
    instance ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_increments {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [IsGaussianProcess X P] {n : } {t : Fin (n + 1)T} :
    HasGaussianLaw (fun (ω : Ω) (i : Fin n) => X (t i.succ) ω - X (t i.castSucc) ω) P
    theorem ProbabilityTheory.IsGaussianProcess.indepFun {S : Type u_1} {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {X : SΩE} {Y : TΩE} (h : IsGaussianProcess (Sum.elim X Y) P) (hX : ∀ (s : S), Measurable (X s)) (hY : ∀ (t : T), Measurable (Y t)) (h' : ∀ (s : S) (t : T) (L₁ L₂ : StrongDual E), covariance (L₁ X s) (L₂ Y t) P = 0) :
    IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P
    theorem ProbabilityTheory.IsGaussianProcess.iIndepFun {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {S : TType u_6} {X : (t : T) → S tΩE} (h : IsGaussianProcess (fun (p : (t : T) × S t) (ω : Ω) => X p.fst p.snd ω) P) (hX : ∀ (t : T) (s : S t), Measurable (X t s)) (h' : ∀ (t₁ t₂ : T), t₁ t₂∀ (s₁ : S t₁) (s₂ : S t₂) (L₁ L₂ : StrongDual E), covariance (L₁ X t₁ s₁) (L₂ X t₂ s₂) P = 0) :
    ProbabilityTheory.iIndepFun (fun (t : T) (ω : Ω) (s : S t) => X t s ω) P
    theorem ProbabilityTheory.IsGaussianProcess.indepFun' {S : Type u_1} {T : Type u_2} {Ω : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_6} [NormedAddCommGroup E] [InnerProductSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {X : SΩE} {Y : TΩE} (h : IsGaussianProcess (Sum.elim X Y) P) (hX : ∀ (s : S), Measurable (X s)) (hY : ∀ (t : T), Measurable (Y t)) (h' : ∀ (s : S) (t : T) (x y : E), covariance (fun (ω : Ω) => inner x (X s ω)) (fun (ω : Ω) => inner y (Y t ω)) P = 0) :
    IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P
    theorem ProbabilityTheory.IsGaussianProcess.iIndepFun' {T : Type u_2} {Ω : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_6} [NormedAddCommGroup E] [InnerProductSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [CompleteSpace E] {S : TType u_7} {X : (t : T) → S tΩE} (h : IsGaussianProcess (fun (p : (t : T) × S t) (ω : Ω) => X p.fst p.snd ω) P) (hX : ∀ (t : T) (s : S t), Measurable (X t s)) (h' : ∀ (t₁ t₂ : T), t₁ t₂∀ (s₁ : S t₁) (s₂ : S t₂) (x y : E), covariance (fun (ω : Ω) => inner x (X t₁ s₁ ω)) (fun (ω : Ω) => inner y (X t₂ s₂ ω)) P = 0) :
    ProbabilityTheory.iIndepFun (fun (t : T) (ω : Ω) (s : S t) => X t s ω) P
    theorem ProbabilityTheory.IsGaussianProcess.indepFun'' {S : Type u_1} {T : Type u_2} {Ω : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : SΩ} {Y : TΩ} (h : IsGaussianProcess (Sum.elim X Y) P) (hX : ∀ (s : S), Measurable (X s)) (hY : ∀ (t : T), Measurable (Y t)) (h' : ∀ (s : S) (t : T), covariance (X s) (Y t) P = 0) :
    IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P
    theorem ProbabilityTheory.IsGaussianProcess.iIndepFun'' {T : Type u_2} {Ω : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {S : TType u_6} {X : (t : T) → S tΩ} (h : IsGaussianProcess (fun (p : (t : T) × S t) (ω : Ω) => X p.fst p.snd ω) P) (hX : ∀ (t : T) (s : S t), Measurable (X t s)) (h' : ∀ (t₁ t₂ : T), t₁ t₂∀ (s₁ : S t₁) (s₂ : S t₂), covariance (X t₁ s₁) (X t₂ s₂) P = 0) :
    ProbabilityTheory.iIndepFun (fun (t : T) (ω : Ω) (s : S t) => X t s ω) P
    theorem ProbabilityTheory.IsGaussianProcess.of_isGaussianProcess {S : Type u_1} {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [IsGaussianProcess X P] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopology F] {Y : SΩF} (h : ∀ (s : S), ∃ (I : Finset T) (L : (IE) →L[] F), ∀ (ω : Ω), Y s ω = L (I.restrict fun (x : T) => X x ω)) :

    If a stochastic process Y is such that for s, Y s can be written as a linear combination of finitely many values of a Gaussian process, then Y is a Gaussian process.

    theorem ProbabilityTheory.IsGaussianProcess.comp_right {S : Type u_1} {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [h : IsGaussianProcess X P] (f : ST) :
    theorem ProbabilityTheory.IsGaussianProcess.comp_left {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopology F] (L : TE →L[] F) [h : IsGaussianProcess X P] :
    IsGaussianProcess (fun (t : T) (ω : Ω) => (L t) (X t ω)) P
    instance ProbabilityTheory.IsGaussianProcess.smul {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] (c : T) [IsGaussianProcess X P] :
    IsGaussianProcess (fun (t : T) (ω : Ω) => c t X t ω) P
    instance ProbabilityTheory.IsGaussianProcess.shift {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [Add T] [h : IsGaussianProcess X P] (t₀ : T) :
    IsGaussianProcess (fun (t : T) (ω : Ω) => X (t₀ + t) ω - X t₀ ω) P
    instance ProbabilityTheory.IsGaussianProcess.restrict {T : Type u_2} {Ω : Type u_3} {E : Type u_4} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : TΩE} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [h : IsGaussianProcess X P] (s : Set T) :
    IsGaussianProcess (fun (t : s) => X t) P