Documentation

Mathlib.Probability.Independence.BoundedContinuousFunction

Characterizing independence via bounded continuous functions #

Given two random variables X : Ω → E and Y : Ω → F such that E and F are Borel spaces satisfying HasOuterApproxClosed, X and Y are independent if for any real bounded continuous functions f and g, ∫ ω, f (X ω) * g (Y ω) ∂P = (∫ ω, f (X ω) ∂P) * (∫ ω, g (Y ω) ∂P).

Consider now X : (s : S) → Ω → E s, with Fintype S and each E s being a Borel space satisfying HasOuterApproxClosed. Then to apply the above result we need that Π s, E s is a Borel space, and therefore that each E s is second countable. We can circumvent this restriction by proving that fun ω s ↦ X s ω and Y are independent if for any family of bounded continuous functions f : (s : S) → E s → ℝ and any bounded continuous function g : F → ℝ we have ∫ ω, ∏ s, f s (X s ω) * g (Y ω) ∂P = ∫ ω, ∏ s, f s (X s ω) ∂P * ∫ ω, g (Y ω) ∂P. We can use this result in the case where S := Unit to deduce the first statement we mentioned.

We take this approach in this file. We first prove pi_indepFun_pi_of_prod_bcf, which allows to prove the result when E and F are product spaces without assuming second countability, and then we deduce the other cases from there.

Building on this, we also prove process_indepFun_process_of_prod_bcf. This time we do not require Fintype S and require the hypothesis to be satisfied for each I : Finset S. Then we similarly deduce other versions where one of the variables is not necessarily a process.

We then turn to independence between an event and a random variable. We prove indicator_indepFun_pi_of_prod_bcf: the indicator of an event A is independent of a finite family of random variables X : (s : S) → Ω → E s if for any family of bounded continuous functions f : (s : S) → E s → ℝ we have ∫ ω in A, ∏ s, f s (X s ω) ∂P = P.real A * ∫ ω, ∏ s, f s (X s ω) ∂P. Once again we deduce other versions from this, and also write versions where X is a stochastic process.

Then we build on that to show that a σ-algebra m is independent from a stochastic process X if for any A such that MeasurableSet[m] A, any I : Finset S and any bounded continuous function f : (Π s : I, E s) → ℝ, we have ∫ ω in A, f (X · ω) ∂P = P.real A * ∫ ω, f (X · ω) ∂P. This again is formulated with different versions. We also provide versions in terms of IndepSets instead of Indep.

Main statement #

Notations #

to avoid writing boundedContinuousFunction in the names, which is quite lengthy, we abbreviate it to bcf.

Tags #

independence, bounded continuous functions

theorem IndepFun.singleton_indepSets_of_indicator {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓧 : Type u_4} [mX : MeasurableSpace 𝓧] {A : Set Ω} {X : Ω𝓧} (h : ProbabilityTheory.IndepFun (A.indicator 1) X P) :

If the indicator of a set A is indepent from a variable X, then set A is independent from the sigma algebra generated by X.

theorem pi_indepFun_pi_of_prod_bcf {Ω : Type u_1} {S : Type u_2} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {F : TType u_5} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] {X : (s : S) → ΩE s} {Y : (t : T) → ΩF t} [Fintype S] [Fintype T] [MeasureTheory.IsFiniteMeasure P] (mX : ∀ (s : S), AEMeasurable (X s) P) (mY : ∀ (t : T), AEMeasurable (Y t) P) (h : ∀ (f : (s : S) → BoundedContinuousFunction (E s) ) (g : (t : T) → BoundedContinuousFunction (F t) ), (x : Ω), ((∏ s : S, (f s) X s) * t : T, (g t) Y t) x P = ( (x : Ω), (∏ s : S, (f s) X s) x P) * (x : Ω), (∏ t : T, (g t) Y t) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P
theorem pi_indepFun_pi_of_bcf {Ω : Type u_1} {S : Type u_2} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {F : TType u_5} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] {X : (s : S) → ΩE s} {Y : (t : T) → ΩF t} [Fintype S] [Fintype T] [MeasureTheory.IsFiniteMeasure P] (mX : ∀ (s : S), AEMeasurable (X s) P) (mY : ∀ (t : T), AEMeasurable (Y t) P) (h : ∀ (f : BoundedContinuousFunction ((s : S) → E s) ) (g : BoundedContinuousFunction ((t : T) → F t) ), (x : Ω), (fun (ω : Ω) => (f fun (x : S) => X x ω) * g fun (x : T) => Y x ω) x P = ( (x : Ω), (fun (ω : Ω) => f fun (x : S) => X x ω) x P) * (x : Ω), (fun (ω : Ω) => g fun (x : T) => Y x ω) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P

Two families of random variables $(X_1, ..., X_p)$ and $(Y_1, ..., Y_q)$ are independent if for all real bounded continuous functions $f$ and $g$, $$P[f(X_1, ..., X_p) g(Y_1, ..., Y_q)] = P[f(X_1, ..., X_p)] * P[g(Y_1, ..., Y_q)].$$

theorem indepFun_pi_of_prod_bcf {Ω : Type u_1} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {F : TType u_5} {G : Type u_6} [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Y : (t : T) → ΩF t} {Z : ΩG} [Fintype T] [MeasureTheory.IsFiniteMeasure P] (mZ : AEMeasurable Z P) (mY : ∀ (t : T), AEMeasurable (Y t) P) (h : ∀ (f : BoundedContinuousFunction G ) (g : (t : T) → BoundedContinuousFunction (F t) ), (x : Ω), (f Z * t : T, (g t) Y t) x P = ( (x : Ω), (f Z) x P) * (x : Ω), (∏ t : T, (g t) Y t) x P) :
ProbabilityTheory.IndepFun Z (fun (ω : Ω) (t : T) => Y t ω) P
theorem indepFun_pi_of_bcf {Ω : Type u_1} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {F : TType u_5} {G : Type u_6} [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Y : (t : T) → ΩF t} {Z : ΩG} [Fintype T] [MeasureTheory.IsFiniteMeasure P] (mZ : AEMeasurable Z P) (mY : ∀ (t : T), AEMeasurable (Y t) P) (h : ∀ (f : BoundedContinuousFunction G ) (g : BoundedContinuousFunction ((t : T) → F t) ), (x : Ω), (fun (ω : Ω) => f (Z ω) * g fun (x : T) => Y x ω) x P = ( (x : Ω), (f Z) x P) * (x : Ω), (fun (ω : Ω) => g fun (x : T) => Y x ω) x P) :
ProbabilityTheory.IndepFun Z (fun (ω : Ω) (t : T) => Y t ω) P
theorem pi_indepFun_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {H : Type u_7} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [TopologicalSpace H] [MeasurableSpace H] [BorelSpace H] [HasOuterApproxClosed H] {X : (s : S) → ΩE s} {U : ΩH} [Fintype S] [MeasureTheory.IsFiniteMeasure P] (mX : ∀ (s : S), AEMeasurable (X s) P) (mU : AEMeasurable U P) (h : ∀ (f : (s : S) → BoundedContinuousFunction (E s) ) (g : BoundedContinuousFunction H ), (x : Ω), ((∏ s : S, (f s) X s) * g U) x P = ( (x : Ω), (∏ s : S, (f s) X s) x P) * (x : Ω), (g U) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) U P
theorem pi_indepFun_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {H : Type u_7} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [TopologicalSpace H] [MeasurableSpace H] [BorelSpace H] [HasOuterApproxClosed H] {X : (s : S) → ΩE s} {U : ΩH} [Fintype S] [MeasureTheory.IsFiniteMeasure P] (mX : ∀ (s : S), AEMeasurable (X s) P) (mU : AEMeasurable U P) (h : ∀ (f : BoundedContinuousFunction ((s : S) → E s) ) (g : BoundedContinuousFunction H ), (x : Ω), (fun (ω : Ω) => (f fun (x : S) => X x ω) * g (U ω)) x P = ( (x : Ω), (fun (ω : Ω) => f fun (x : S) => X x ω) x P) * (x : Ω), (g U) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) U P
theorem indepFun_of_bcf {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {G : Type u_6} {H : Type u_7} [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] [TopologicalSpace H] [MeasurableSpace H] [BorelSpace H] [HasOuterApproxClosed H] {Z : ΩG} {U : ΩH} [MeasureTheory.IsFiniteMeasure P] (mZ : AEMeasurable Z P) (mU : AEMeasurable U P) (h : ∀ (f : BoundedContinuousFunction G ) (g : BoundedContinuousFunction H ), (x : Ω), (f Z * g U) x P = ( (x : Ω), (f Z) x P) * (x : Ω), (g U) x P) :

Two random variables $X$ and $Y$ are independent if for all real bounded continuous functions $f$ and $g$, $$P[f(X) g(Y)] = P[f(X)] * P[g(Y)].$$

theorem indicator_indepFun_pi_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] {A : Set Ω} (mA : MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : ∀ (f : (s : S) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : S, (f s) (X s ω) P = P.real A * (ω : Ω), s : S, (f s) (X s ω) P) :
ProbabilityTheory.IndepFun (A.indicator 1) (fun (ω : Ω) (s : S) => X s ω) P
theorem indicator_indepFun_pi_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] {A : Set Ω} (mA : MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : ∀ (f : BoundedContinuousFunction ((s : S) → E s) ), (ω : Ω) in A, f fun (x : S) => X x ω P = P.real A * (ω : Ω), f fun (x : S) => X x ω P) :
ProbabilityTheory.IndepFun (A.indicator 1) (fun (ω : Ω) (s : S) => X s ω) P

The indicator of a set $A$ and a family of random variables $(X_1, ..., X_p)$ are independent if for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X_1, ..., X_p)] = P(A) P[f(X_1, ..., X_p)].$$

theorem indicator_indepFun_of_bcf {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {G : Type u_6} [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Z : ΩG} [MeasureTheory.IsProbabilityMeasure P] {A : Set Ω} (mA : MeasureTheory.NullMeasurableSet A P) (mZ : AEMeasurable Z P) (h : ∀ (f : BoundedContinuousFunction G ), (ω : Ω) in A, f (Z ω) P = P.real A * (ω : Ω), f (Z ω) P) :

The indicator of a set $A$ and a random variable $X$ are independent if for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X)] = P(A) P[f(X)].$$

theorem indepSets_comap_pi_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] {𝒜 : Set (Set Ω)} (m𝒜 : A𝒜, MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : A𝒜, ∀ (f : (s : S) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : S, (f s) (X s ω) P = P.real A * (ω : Ω), s : S, (f s) (X s ω) P) :
theorem indepSets_comap_pi_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] {𝒜 : Set (Set Ω)} (m𝒜 : A𝒜, MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : A𝒜, ∀ (f : BoundedContinuousFunction ((s : S) → E s) ), (ω : Ω) in A, f fun (x : S) => X x ω P = P.real A * (ω : Ω), f fun (x : S) => X x ω P) :
theorem indepSets_comap_of_bcf {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {G : Type u_6} [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Z : ΩG} [MeasureTheory.IsProbabilityMeasure P] {𝒜 : Set (Set Ω)} (m𝒜 : A𝒜, MeasureTheory.NullMeasurableSet A P) (mZ : AEMeasurable Z P) (h : A𝒜, ∀ (f : BoundedContinuousFunction G ), (ω : Ω) in A, f (Z ω) P = P.real A * (ω : Ω), f (Z ω) P) :
theorem indep_comap_pi_of_prod_bcf {Ω : Type u_1} {S : Type u_2} {m : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] (hm : m ) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : ∀ (A : Set Ω), MeasurableSet A∀ (f : (s : S) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : S, (f s) (X s ω) P = P.real A * (ω : Ω), s : S, (f s) (X s ω) P) :
ProbabilityTheory.Indep m (MeasurableSpace.comap (fun (ω : Ω) (s : S) => X s ω) MeasurableSpace.pi) P
theorem indep_comap_pi_of_bcf {Ω : Type u_1} {S : Type u_2} {m : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [Fintype S] [MeasureTheory.IsProbabilityMeasure P] (hm : m ) (mX : ∀ (s : S), AEMeasurable (X s) P) (h : ∀ (A : Set Ω), MeasurableSet A∀ (f : BoundedContinuousFunction ((s : S) → E s) ), (ω : Ω) in A, f fun (x : S) => X x ω P = P.real A * (ω : Ω), f fun (x : S) => X x ω P) :
ProbabilityTheory.Indep m (MeasurableSpace.comap (fun (ω : Ω) (s : S) => X s ω) MeasurableSpace.pi) P

A sigma-algebra $\mathcal{A}$ and a family of random variables $(X_1, ..., X_p)$ are independent if for all set $A \in \mathcal{A}$ and for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X_1, ..., X_p)] = P(A) P[f(X_1, ..., X_p)].$$

theorem indep_comap_of_bcf {Ω : Type u_1} {m : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {G : Type u_6} [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Z : ΩG} [MeasureTheory.IsProbabilityMeasure P] (hm : m ) (mZ : AEMeasurable Z P) (h : ∀ (A : Set Ω), MeasurableSet A∀ (f : BoundedContinuousFunction G ), (ω : Ω) in A, f (Z ω) P = P.real A * (ω : Ω), f (Z ω) P) :

A sigma-algebra $\mathcal{A}$ and a random variable $X$ are independent if for all set $A \in \mathcal{A}$ and for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X)] = P(A) P[f(X)].$$

theorem process_indepFun_process_of_prod_bcf {Ω : Type u_1} {S : Type u_2} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {F : TType u_5} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] {X : (s : S) → ΩE s} {Y : (t : T) → ΩF t} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mX : ∀ (s : S), Measurable (X s)) (mY : ∀ (t : T), Measurable (Y t)) (h : ∀ (I : Finset S) (J : Finset T) (f : (s : I) → BoundedContinuousFunction (E s) ) (g : (t : J) → BoundedContinuousFunction (F t) ), (x : Ω), ((∏ s : I, (f s) X s) * t : J, (g t) Y t) x P = ( (x : Ω), (∏ s : I, (f s) X s) x P) * (x : Ω), (∏ t : J, (g t) Y t) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P
theorem process_indepFun_process_of_bcf {Ω : Type u_1} {S : Type u_2} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {F : TType u_5} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] {X : (s : S) → ΩE s} {Y : (t : T) → ΩF t} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mX : ∀ (s : S), Measurable (X s)) (mY : ∀ (t : T), Measurable (Y t)) (h : ∀ (I : Finset S) (J : Finset T) (f : BoundedContinuousFunction ((s : I) → E s) ) (g : BoundedContinuousFunction ((t : J) → F t) ), (x : Ω), (fun (ω : Ω) => (f fun (x : I) => X (↑x) ω) * g fun (x : J) => Y (↑x) ω) x P = ( (x : Ω), (fun (ω : Ω) => f fun (x : I) => X (↑x) ω) x P) * (x : Ω), (fun (ω : Ω) => g fun (x : J) => Y (↑x) ω) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) (fun (ω : Ω) (t : T) => Y t ω) P

Two stochastic processes $(X_s)_{s \in S}$ and $(Y_t)_{t \in T}$ are independent if for all $s_1, ..., s_p \in S, t_1, ..., t_q \in T$ and for all real bounded continuous functions $f$ and $g$, $$P[f(X_{s_1}, ..., X_{s_p}) g(Y_{t_1}, ..., Y_{t_q})] = P[f(X_{s_1}, ..., X_{s_p})] * P[g(Y_{t_1}, ..., Y_{t_q})].$$

theorem indepFun_process_of_prod_bcf {Ω : Type u_1} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {F : TType u_5} {G : Type u_6} [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Y : (t : T) → ΩF t} {Z : ΩG} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mZ : AEMeasurable Z P) (mY : ∀ (t : T), Measurable (Y t)) (h : ∀ (f : BoundedContinuousFunction G ) (J : Finset T) (g : (t : J) → BoundedContinuousFunction (F t) ), (x : Ω), (f Z * t : J, (g t) Y t) x P = ( (x : Ω), (f Z) x P) * (x : Ω), (∏ t : J, (g t) Y t) x P) :
ProbabilityTheory.IndepFun Z (fun (ω : Ω) (t : T) => Y t ω) P
theorem indepFun_process_of_bcf {Ω : Type u_1} {T : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {F : TType u_5} {G : Type u_6} [(t : T) → TopologicalSpace (F t)] [(t : T) → MeasurableSpace (F t)] [∀ (t : T), BorelSpace (F t)] [∀ (t : T), HasOuterApproxClosed (F t)] [TopologicalSpace G] [MeasurableSpace G] [BorelSpace G] [HasOuterApproxClosed G] {Y : (t : T) → ΩF t} {Z : ΩG} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mZ : AEMeasurable Z P) (mY : ∀ (t : T), Measurable (Y t)) (h : ∀ (f : BoundedContinuousFunction G ) (J : Finset T) (g : BoundedContinuousFunction ((t : J) → F t) ), (x : Ω), (fun (ω : Ω) => f (Z ω) * g fun (x : J) => Y (↑x) ω) x P = ( (x : Ω), (f Z) x P) * (x : Ω), (fun (ω : Ω) => g fun (x : J) => Y (↑x) ω) x P) :
ProbabilityTheory.IndepFun Z (fun (ω : Ω) (t : T) => Y t ω) P
theorem process_indepFun_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {H : Type u_7} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [TopologicalSpace H] [MeasurableSpace H] [BorelSpace H] [HasOuterApproxClosed H] {X : (s : S) → ΩE s} {U : ΩH} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mX : ∀ (s : S), Measurable (X s)) (mU : AEMeasurable U P) (h : ∀ (I : Finset S) (f : (s : I) → BoundedContinuousFunction (E s) ) (g : BoundedContinuousFunction H ), (x : Ω), ((∏ s : I, (f s) X s) * g U) x P = ( (x : Ω), (∏ s : I, (f s) X s) x P) * (x : Ω), (g U) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) U P
theorem process_indepFun_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} {H : Type u_7} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] [TopologicalSpace H] [MeasurableSpace H] [BorelSpace H] [HasOuterApproxClosed H] {X : (s : S) → ΩE s} {U : ΩH} [MeasureTheory.IsZeroOrProbabilityMeasure P] (mX : ∀ (s : S), Measurable (X s)) (mU : AEMeasurable U P) (h : ∀ (I : Finset S) (f : BoundedContinuousFunction ((s : I) → E s) ) (g : BoundedContinuousFunction H ), (x : Ω), (fun (ω : Ω) => (f fun (x : I) => X (↑x) ω) * g (U ω)) x P = ( (x : Ω), (fun (ω : Ω) => f fun (x : I) => X (↑x) ω) x P) * (x : Ω), (g U) x P) :
ProbabilityTheory.IndepFun (fun (ω : Ω) (s : S) => X s ω) U P
theorem indicator_indepFun_process_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] {A : Set Ω} (mA : MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), Measurable (X s)) (h : ∀ (I : Finset S) (f : (s : I) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : I, (f s) (X (↑s) ω) P = P.real A * (ω : Ω), s : I, (f s) (X (↑s) ω) P) :
ProbabilityTheory.IndepFun (A.indicator 1) (fun (ω : Ω) (s : S) => X s ω) P
theorem indicator_indepFun_process_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] {A : Set Ω} (mA : MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), Measurable (X s)) (h : ∀ (I : Finset S) (f : BoundedContinuousFunction ((s : I) → E s) ), (ω : Ω) in A, f fun (x : I) => X (↑x) ω P = P.real A * (ω : Ω), f fun (x : I) => X (↑x) ω P) :
ProbabilityTheory.IndepFun (A.indicator 1) (fun (ω : Ω) (s : S) => X s ω) P

The indicator of a set $A$ and a stochastic process $(X_s)_{s \in S}$ are independent if for all $s_1, ..., s_p \in S$ and for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X_{s_1}, ..., X_{s_p})] = P(A) P[f(X_{s_1}, ..., X_{s_p})].$$

theorem indepSets_comap_process_of_prod_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] {𝒜 : Set (Set Ω)} (m𝒜 : A𝒜, MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), Measurable (X s)) (h : A𝒜, ∀ (I : Finset S) (f : (s : I) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : I, (f s) (X (↑s) ω) P = P.real A * (ω : Ω), s : I, (f s) (X (↑s) ω) P) :
theorem indepSets_comap_process_of_bcf {Ω : Type u_1} {S : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] {𝒜 : Set (Set Ω)} (m𝒜 : A𝒜, MeasureTheory.NullMeasurableSet A P) (mX : ∀ (s : S), Measurable (X s)) (h : A𝒜, ∀ (I : Finset S) (f : BoundedContinuousFunction ((s : I) → E s) ), (ω : Ω) in A, f fun (x : I) => X (↑x) ω P = P.real A * (ω : Ω), f fun (x : I) => X (↑x) ω P) :
theorem indep_comap_process_of_prod_bcf {Ω : Type u_1} {S : Type u_2} {m : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] (hm : m ) (mX : ∀ (s : S), Measurable (X s)) (h : ∀ (A : Set Ω), MeasurableSet A∀ (I : Finset S) (f : (s : I) → BoundedContinuousFunction (E s) ), (ω : Ω) in A, s : I, (f s) (X (↑s) ω) P = P.real A * (ω : Ω), s : I, (f s) (X (↑s) ω) P) :
ProbabilityTheory.Indep m (MeasurableSpace.comap (fun (ω : Ω) (s : S) => X s ω) MeasurableSpace.pi) P
theorem indep_comap_process_of_bcf {Ω : Type u_1} {S : Type u_2} {m : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : SType u_4} [(s : S) → TopologicalSpace (E s)] [(s : S) → MeasurableSpace (E s)] [∀ (s : S), BorelSpace (E s)] [∀ (s : S), HasOuterApproxClosed (E s)] {X : (s : S) → ΩE s} [MeasureTheory.IsProbabilityMeasure P] (hm : m ) (mX : ∀ (s : S), Measurable (X s)) (h : ∀ (A : Set Ω), MeasurableSet A∀ (I : Finset S) (f : BoundedContinuousFunction ((s : I) → E s) ), (ω : Ω) in A, f fun (x : I) => X (↑x) ω P = P.real A * (ω : Ω), f fun (x : I) => X (↑x) ω P) :
ProbabilityTheory.Indep m (MeasurableSpace.comap (fun (ω : Ω) (s : S) => X s ω) MeasurableSpace.pi) P

A sigma-algebra $\mathcal{A}$ and a stochastic process $(X_s)_{s \in S}$ are independent if for all $A \in \mathcal{A}$, for all $s_1, ..., s_p \in S$ and for all real bounded continuous function $f$, $$P[\mathbb{I}_A f(X_{s_1}, ..., X_{s_p})] = P(A) P[f(X_{s_1}, ..., X_{s_p})].$$