Documentation

BrownianMotion.Auxiliary.HasLaw

structure ProbabilityTheory.HasLaw {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} (X : Ω𝓧) (μ : MeasureTheory.Measure 𝓧) (P : MeasureTheory.Measure Ω := by volume_tac) :

The predicate HasLaw X μ P registers the fact that the random variable X has law μ under the measure P, in other words that P.map X = μ. We also require X to be AEMeasurable, to allow for nice interactions with operations on the codomain of X. See for instance HasLaw.comp, IndepFun.hasLaw_mul and IndepFun.hasLaw_add.

Instances For
    theorem ProbabilityTheory.HasLaw.congr {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} {Y : Ω𝓧} (hX : HasLaw X μ P) (hY : Y =ᵐ[P] X) :
    HasLaw Y μ P
    theorem ProbabilityTheory.MeasurePreserving.hasLaw {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} (h : MeasureTheory.MeasurePreserving X P μ) :
    HasLaw X μ P
    theorem ProbabilityTheory.HasLaw.measurePreserving {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} (h₁ : HasLaw X μ P) (h₂ : Measurable X) :
    theorem ProbabilityTheory.HasLaw.comp {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_3} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} {𝒴 : Type u_2} {m𝒴 : MeasurableSpace 𝒴} {ν : MeasureTheory.Measure 𝒴} {Y : 𝓧𝒴} (hY : HasLaw Y ν μ) (hX : HasLaw X μ P) :
    HasLaw (Y X) ν P
    theorem ProbabilityTheory.HasLaw.fun_comp {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_3} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} {𝒴 : Type u_2} {m𝒴 : MeasurableSpace 𝒴} {ν : MeasureTheory.Measure 𝒴} {Y : 𝓧𝒴} (hY : HasLaw Y ν μ) (hX : HasLaw X μ P) :
    HasLaw (fun (ω : Ω) => Y (X ω)) ν P
    theorem ProbabilityTheory.IndepFun.hasLaw_mul {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {M : Type u_2} [Monoid M] {mM : MeasurableSpace M} [MeasurableMul₂ M] {μ ν : MeasureTheory.Measure M} {X Y : ΩM} (hX : HasLaw X μ P) (hY : HasLaw Y ν P) (hXY : IndepFun X Y P) :
    HasLaw (X * Y) (μ.mconv ν) P
    theorem ProbabilityTheory.IndepFun.hasLaw_add {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {M : Type u_2} [AddMonoid M] {mM : MeasurableSpace M} [MeasurableAdd₂ M] {μ ν : MeasureTheory.Measure M} {X Y : ΩM} (hX : HasLaw X μ P) (hY : HasLaw Y ν P) (hXY : IndepFun X Y P) :
    HasLaw (X + Y) (μ.conv ν) P
    theorem ProbabilityTheory.IndepFun.hasLaw_fun_mul {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {M : Type u_2} [Monoid M] {mM : MeasurableSpace M} [MeasurableMul₂ M] {μ ν : MeasureTheory.Measure M} {X Y : ΩM} (hX : HasLaw X μ P) (hY : HasLaw Y ν P) (hXY : IndepFun X Y P) :
    HasLaw (fun (ω : Ω) => X ω * Y ω) (μ.mconv ν) P
    theorem ProbabilityTheory.IndepFun.hasLaw_fun_add {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure P] {M : Type u_2} [AddMonoid M] {mM : MeasurableSpace M} [MeasurableAdd₂ M] {μ ν : MeasureTheory.Measure M} {X Y : ΩM} (hX : HasLaw X μ P) (hY : HasLaw Y ν P) (hXY : IndepFun X Y P) :
    HasLaw (fun (ω : Ω) => X ω + Y ω) (μ.conv ν) P
    theorem ProbabilityTheory.HasLaw.integral_comp {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_3} {m𝓧 : MeasurableSpace 𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {X : Ω𝓧} (hX : HasLaw X μ P) {f : 𝓧E} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
    (x : Ω), (f X) x P = (x : 𝓧), f x μ
    theorem ProbabilityTheory.HasLaw.lintegral_comp {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {μ : MeasureTheory.Measure 𝓧} {P : MeasureTheory.Measure Ω} {X : Ω𝓧} (hX : HasLaw X μ P) {f : 𝓧ENNReal} (hf : AEMeasurable f μ) :
    ∫⁻ (ω : Ω), f (X ω) P = ∫⁻ (x : 𝓧), f x μ
    theorem ProbabilityTheory.HasLaw.integral_eq {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [SecondCountableTopology E] {mE : MeasurableSpace E} [OpensMeasurableSpace E] {μ : MeasureTheory.Measure E} {X : ΩE} (hX : HasLaw X μ P) :
    (x : Ω), X x P = (x : E), x μ
    theorem ProbabilityTheory.HasLaw.variance_eq {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {μ : MeasureTheory.Measure } {X : Ω} (hX : HasLaw X μ P) :
    class ProbabilityTheory.HasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} (X : ΩE) (P : MeasureTheory.Measure Ω) [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] :

    The predicate HasGaussianLaw X P means that under the measure P, X has a Gaussian distribution

    Instances
      instance ProbabilityTheory.IsGaussian.hasGaussianLaw_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] [IsGaussian (MeasureTheory.Measure.map X P)] :
      HasGaussianLaw (fun (ω : Ω) => X ω) P
      theorem ProbabilityTheory.HasLaw.hasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} (hX : HasLaw X μ P) [IsGaussian μ] :
      instance ProbabilityTheory.HasGaussianLaw.map_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (L : E →L[] F) [hX : HasGaussianLaw X P] :
      HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
      instance ProbabilityTheory.HasGaussianLaw.map_equiv_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (L : E ≃L[] F) [hX : HasGaussianLaw X P] :
      HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
      instance ProbabilityTheory.HasGaussianLaw.eval {ι : Type u_4} {Ω : Type u_5} {E : ιType u_6} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} [h : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (i : ι) :
      instance ProbabilityTheory.HasGaussianLaw.toLp_comp {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} (p : ENNReal) [Fact (1 p)] {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} [HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] :
      HasGaussianLaw (fun (ω : Ω) => WithLp.toLp p fun (x : ι) => X x ω) P
      instance ProbabilityTheory.IsGaussian.map_eval {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] {mE : (i : ι) → MeasurableSpace (E i)} [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {μ : MeasureTheory.Measure ((i : ι) → E i)} [IsGaussian μ] (i : ι) :
      HasGaussianLaw (fun (x : (i : ι) → E i) => x i) μ
      instance ProbabilityTheory.IsGaussian.map_eval_piLp (p : ENNReal) [Fact (1 p)] {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] {mE : (i : ι) → MeasurableSpace (E i)} [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {μ : MeasureTheory.Measure (PiLp p E)} [IsGaussian μ] (i : ι) :
      HasGaussianLaw (fun (x : PiLp p E) => x i) μ
      instance ProbabilityTheory.HasGaussianLaw.sub {ι : Type u_4} {Ω : Type u_5} {E : Type u_6} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {X : ιΩE} [h : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (i j : ι) :
      HasGaussianLaw (X i - X j) P
      instance ProbabilityTheory.IsGaussian.map_eval_sub_eval {ι : Type u_4} {E : Type u_5} [Fintype ι] [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {μ : MeasureTheory.Measure (ιE)} [IsGaussian μ] (i j : ι) :
      HasGaussianLaw (fun (x : ιE) => x i - x j) μ
      instance ProbabilityTheory.IsGaussian.map_eval_sub_eval_piLp (p : ENNReal) [Fact (1 p)] {ι : Type u_4} {E : Type u_5} [Fintype ι] [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {μ : MeasureTheory.Measure (PiLp p fun (x : ι) => E)} [IsGaussian μ] (i j : ι) :
      HasGaussianLaw (fun (x : PiLp p fun (x : ι) => E) => x i - x j) μ