Documentation

BrownianMotion.Auxiliary.HasLaw

theorem ProbabilityTheory.hasLaw_map {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {P : MeasureTheory.Measure Ω} (hX : AEMeasurable X P) :
theorem ProbabilityTheory.HasLaw.ae_eq_of_dirac' {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} [MeasurableSingletonClass 𝓧] {x : 𝓧} {X : Ω𝓧} (hX : HasLaw X (MeasureTheory.Measure.dirac x) P) :
X =ᵐ[P] fun (x_1 : Ω) => x
theorem ProbabilityTheory.HasLaw.ae_eq_of_dirac {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} [MeasurableSingletonClass 𝓧] {x : 𝓧} {X : Ω𝓧} (hX : HasLaw X (MeasureTheory.Measure.dirac x) P) :
∀ᵐ (ω : Ω) P, X ω = x
theorem ProbabilityTheory.HasLaw.ae_eq_const_of_gaussianReal {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : Ω} {μ : } (hX : HasLaw X (gaussianReal μ 0) P) :
∀ᵐ (ω : Ω) P, X ω = μ
class ProbabilityTheory.HasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} (X : ΩE) (P : MeasureTheory.Measure Ω) [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] :

The predicate HasGaussianLaw X P means that under the measure P, X has a Gaussian distribution

Instances
    theorem ProbabilityTheory.HasGaussianLaw.congr {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] {Y : ΩE} [HasGaussianLaw X P] (h : ∀ᵐ (ω : Ω) P, X ω = Y ω) :
    instance ProbabilityTheory.IsGaussian.hasGaussianLaw_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] [mE : MeasurableSpace E] [IsGaussian (MeasureTheory.Measure.map X P)] :
    HasGaussianLaw (fun (ω : Ω) => X ω) P
    theorem ProbabilityTheory.HasLaw.hasGaussianLaw {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [TopologicalSpace E] [AddCommMonoid E] [Module E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} (hX : HasLaw X μ P) [IsGaussian μ] :
    instance ProbabilityTheory.HasGaussianLaw.map_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (L : E →L[] F) [hX : HasGaussianLaw X P] :
    HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
    instance ProbabilityTheory.HasGaussianLaw.map_equiv_fun {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] (L : E ≃L[] F) [hX : HasGaussianLaw X P] :
    HasGaussianLaw (fun (ω : Ω) => L (X ω)) P
    instance ProbabilityTheory.HasGaussianLaw.toLp_comp_prodMk {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopologyEither E F] {Y : ΩF} (p : ENNReal) [Fact (1 p)] [HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P] :
    HasGaussianLaw (fun (ω : Ω) => WithLp.toLp p (X ω, Y ω)) P
    theorem ProbabilityTheory.HasGaussianLaw.fst {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopologyEither E F] {Y : ΩF} [HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P] :
    theorem ProbabilityTheory.HasGaussianLaw.snd {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {X : ΩE} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] [MeasurableSpace F] [BorelSpace F] [SecondCountableTopologyEither E F] {Y : ΩF} [HasGaussianLaw (fun (ω : Ω) => (X ω, Y ω)) P] :
    instance ProbabilityTheory.HasGaussianLaw.sub {Ω : Type u_1} { : MeasurableSpace Ω} {E : Type u_2} {P : MeasureTheory.Measure Ω} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {ι : Type u_4} [Fintype ι] {X : ιΩE} [h : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (i j : ι) :
    HasGaussianLaw (X i - X j) P
    instance ProbabilityTheory.IsGaussian.hasGaussianLaw_sub_eval {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {ι : Type u_4} [Fintype ι] {μ : MeasureTheory.Measure (ιE)} [IsGaussian μ] (i j : ι) :
    HasGaussianLaw (fun (x : ιE) => x i - x j) μ
    instance ProbabilityTheory.IsGaussian.hasGaussianLaw_sub_eval_piLp {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] {ι : Type u_4} [Fintype ι] (p : ENNReal) [Fact (1 p)] {μ : MeasureTheory.Measure (PiLp p fun (x : ι) => E)} [IsGaussian μ] (i j : ι) :
    HasGaussianLaw (fun (x : PiLp p fun (x : ι) => E) => x i - x j) μ
    instance ProbabilityTheory.HasGaussianLaw.eval {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} [h : HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] (i : ι) :
    instance ProbabilityTheory.HasGaussianLaw.toLp_comp_pi {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {X : (i : ι) → ΩE i} (p : ENNReal) [Fact (1 p)] [HasGaussianLaw (fun (ω : Ω) (x : ι) => X x ω) P] :
    HasGaussianLaw (fun (ω : Ω) => WithLp.toLp p fun (x : ι) => X x ω) P
    instance ProbabilityTheory.IsGaussian.hasGaussianLaw_eval {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] {μ : MeasureTheory.Measure ((i : ι) → E i)} [IsGaussian μ] (i : ι) :
    HasGaussianLaw (fun (x : (i : ι) → E i) => x i) μ
    instance ProbabilityTheory.IsGaussian.hasGaussianLaw_eval_piLp {ι : Type u_4} [Fintype ι] {E : ιType u_5} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace (E i)] [(i : ι) → MeasurableSpace (E i)] [∀ (i : ι), BorelSpace (E i)] [∀ (i : ι), SecondCountableTopology (E i)] (p : ENNReal) [Fact (1 p)] {μ : MeasureTheory.Measure (PiLp p E)} [IsGaussian μ] (i : ι) :
    HasGaussianLaw (fun (x : PiLp p E) => x i) μ