Documentation

BrownianMotion.Auxiliary.HasLaw

theorem ProbabilityTheory.hasLaw_map {Ω : Type u_1} { : MeasurableSpace Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} {X : Ω𝓧} {P : MeasureTheory.Measure Ω} (hX : AEMeasurable X P) :
theorem ProbabilityTheory.HasLaw.ae_eq_of_dirac' {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} [MeasurableSingletonClass 𝓧] {x : 𝓧} {X : Ω𝓧} (hX : HasLaw X (MeasureTheory.Measure.dirac x) P) :
X =ᵐ[P] fun (x_1 : Ω) => x
theorem ProbabilityTheory.HasLaw.ae_eq_of_dirac {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {𝓧 : Type u_2} {m𝓧 : MeasurableSpace 𝓧} [MeasurableSingletonClass 𝓧] {x : 𝓧} {X : Ω𝓧} (hX : HasLaw X (MeasureTheory.Measure.dirac x) P) :
∀ᵐ (ω : Ω) P, X ω = x
theorem ProbabilityTheory.HasLaw.ae_eq_const_of_gaussianReal {Ω : Type u_1} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : Ω} {μ : } (hX : HasLaw X (gaussianReal μ 0) P) :
∀ᵐ (ω : Ω) P, X ω = μ