Pre-Brownian motion as a projective limit #
theorem
L2.posSemidef_interMatrix
{ι : Type u_1}
[Fintype ι]
{α : Type u_2}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{v : ι → Set α}
(hv₁ : ∀ (j : ι), MeasurableSet (v j))
(hv₂ : ∀ (j : ι), μ (v j) ≠ ⊤ := by finiteness)
 :
(Matrix.of fun (i j : ι) => μ.real (v i ∩ v j)).PosSemidef
Equations
- ProbabilityTheory.brownianCovMatrix I = Matrix.of fun (s t : ↥I) => min ↑↑s ↑↑t
Instances For
theorem
ProbabilityTheory.brownianCovMatrix_submatrix
{I J : Finset NNReal}
(hJI : J ⊆ I)
 :
((brownianCovMatrix I).submatrix (fun (i : ↥J) => ⟨↑i, ⋯⟩) fun (i : ↥J) => ⟨↑i, ⋯⟩) = brownianCovMatrix J
noncomputable def
ProbabilityTheory.gaussianProjectiveFamily
(I : Finset NNReal)
 :
MeasureTheory.Measure (↥I → ℝ)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.integral_gaussianProjectiveFamily
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(I : Finset NNReal)
(f : (↥I → ℝ) → E)
 :
∫ (x : ↥I → ℝ), f x ∂gaussianProjectiveFamily I =   ∫ (x : EuclideanSpace ℝ ↥I), f ((EuclideanSpace.equiv ↥I ℝ) x) ∂multivariateGaussian 0 (brownianCovMatrix I)
@[simp]
theorem
ProbabilityTheory.covariance_eval_gaussianProjectiveFamily
(I : Finset NNReal)
(s t : ↥I)
 :
covariance (fun (x : ↥I → ℝ) => x s) (fun (x : ↥I → ℝ) => x t) (gaussianProjectiveFamily I) = ↑(min ↑s ↑t)
theorem
ProbabilityTheory.hasLaw_eval_gaussianProjectiveFamily
{I : Finset NNReal}
(s : ↥I)
 :
HasLaw (fun (x : ↥I → ℝ) => x s) (gaussianReal 0 ↑s) (gaussianProjectiveFamily I)
theorem
ProbabilityTheory.hasLaw_eval_sub_eval_gaussianProjectiveFamily
(I : Finset NNReal)
(s t : ↥I)
 :
HasLaw (fun (x : ↥I → ℝ) => x s - x t) (gaussianReal 0 (max (↑s - ↑t) (↑t - ↑s))) (gaussianProjectiveFamily I)
theorem
ProbabilityTheory.measurePreserving_restrict_gaussianProjectiveFamily
{I J : Finset NNReal}
(hIJ : I ⊆ J)
 :
theorem
MeasureTheory.IsProjectiveLimit.hasLaw_restrict
{ι : Type u_2}
{X : ι → Type u_3}
{mX : (i : ι) → MeasurableSpace (X i)}
{μ : Measure ((i : ι) → X i)}
{P : (I : Finset ι) → Measure ((i : ↥I) → X ↑i)}
(h : IsProjectiveLimit μ P)
{I : Finset ι}
 :
ProbabilityTheory.HasLaw I.restrict (P I) μ
theorem
ProbabilityTheory.hasLaw_eval_gaussianLimit
{t : NNReal}
 :
HasLaw (fun (x : NNReal → ℝ) => x t) (gaussianReal 0 t) gaussianLimit