Stochastic processes satisfying the Kolmogorov condition #
structure
ProbabilityTheory.IsKolmogorovProcess
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
(X : T → Ω → E)
(P : MeasureTheory.Measure Ω)
(p q M : NNReal)
:
- aemeasurablePair (s t : T) : AEMeasurable (fun (ω : Ω) => (X s ω, X t ω)) P
Instances For
theorem
ProbabilityTheory.IsKolmogorovProcess.aemeasurable
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
(hX : IsKolmogorovProcess X P p q M)
(s : T)
:
AEMeasurable (X s) P
theorem
ProbabilityTheory.aemeasurable_pair_of_aemeasurable
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
[SecondCountableTopology E]
(hX : ∀ (s : T), AEMeasurable (X s) P)
(s t : T)
:
AEMeasurable (fun (ω : Ω) => (X s ω, X t ω)) P
theorem
ProbabilityTheory.IsKolmogorovProcess.mk_of_secondCountableTopology
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
[SecondCountableTopology E]
(h_meas : ∀ (s : T), AEMeasurable (X s) P)
(h_kol : ∀ (s t : T), ∫⁻ (ω : Ω), edist (X s ω) (X t ω) ^ ↑p ∂P ≤ ↑M * edist s t ^ ↑q)
:
IsKolmogorovProcess X P p q M
theorem
ProbabilityTheory.IsKolmogorovProcess.aestronglyMeasurable_edist
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
(hX : IsKolmogorovProcess X P p q M)
{s t : T}
:
MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
theorem
ProbabilityTheory.IsKolmogorovProcess.aemeasurable_edist
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
(hX : IsKolmogorovProcess X P p q M)
{s t : T}
:
AEMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
theorem
ProbabilityTheory.lintegral_sup_rpow_edist_le_card_mul_rpow
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
(hX : IsKolmogorovProcess X P p q M)
{ε : ENNReal}
(C : Finset (T × T))
(hC : ∀ u ∈ C, edist u.1 u.2 ≤ ε)
:
theorem
ProbabilityTheory.lintegral_sup_rpow_edist_le_card_mul_rpow_of_dist_le
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[PseudoEMetricSpace T]
{mΩ : MeasurableSpace Ω}
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
{p q M : NNReal}
{P : MeasureTheory.Measure Ω}
{X : T → Ω → E}
(hX : IsKolmogorovProcess X P p q M)
{J : Finset T}
{a c : ENNReal}
{n : ℕ}
(hJ_card : ↑J.card ≤ a ^ n)
(ha : 1 < a)
(hc : c ≠ 0)
: