Documentation

BrownianMotion.Continuity.IsKolmogorovProcess

Stochastic processes satisfying the Kolmogorov condition #

structure ProbabilityTheory.IsKolmogorovProcess {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] (X : TΩE) (P : MeasureTheory.Measure Ω) (p q M : NNReal) :
Instances For
    theorem ProbabilityTheory.IsKolmogorovProcess.aemeasurable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) (s : T) :
    AEMeasurable (X s) P
    theorem ProbabilityTheory.aemeasurable_pair_of_aemeasurable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {P : MeasureTheory.Measure Ω} {X : TΩE} [SecondCountableTopology E] (hX : ∀ (s : T), AEMeasurable (X s) P) (s t : T) :
    AEMeasurable (fun (ω : Ω) => (X s ω, X t ω)) P
    theorem ProbabilityTheory.IsKolmogorovProcess.mk_of_secondCountableTopology {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} [SecondCountableTopology E] (h_meas : ∀ (s : T), AEMeasurable (X s) P) (h_kol : ∀ (s t : T), ∫⁻ (ω : Ω), edist (X s ω) (X t ω) ^ p P M * edist s t ^ q) :
    theorem ProbabilityTheory.IsKolmogorovProcess.aestronglyMeasurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {s t : T} :
    MeasureTheory.AEStronglyMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
    theorem ProbabilityTheory.IsKolmogorovProcess.aemeasurable_edist {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {s t : T} :
    AEMeasurable (fun (ω : Ω) => edist (X s ω) (X t ω)) P
    theorem ProbabilityTheory.lintegral_sup_rpow_edist_le_card_mul_rpow {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {ε : ENNReal} (C : Finset (T × T)) (hC : uC, edist u.1 u.2 ε) :
    ∫⁻ (ω : Ω), uC, edist (X u.1 ω) (X u.2 ω) ^ p P C.card * M * ε ^ q
    theorem ProbabilityTheory.lintegral_sup_rpow_edist_le_card_mul_rpow_of_dist_le {T : Type u_1} {Ω : Type u_2} {E : Type u_3} [PseudoEMetricSpace T] { : MeasurableSpace Ω} [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] {p q M : NNReal} {P : MeasureTheory.Measure Ω} {X : TΩE} (hX : IsKolmogorovProcess X P p q M) {J : Finset T} {a c : ENNReal} {n : } (hJ_card : J.card a ^ n) (ha : 1 < a) (hc : c 0) :
    ∫⁻ (ω : Ω), ⨆ (s : T), ⨆ (t : T), ⨆ (_ : s J), ⨆ (_ : t J), ⨆ (_ : edist s t c), edist (X s ω) (X t ω) ^ p P 2 ^ p * a * J.card * M * (c * n) ^ q