Documentation

BrownianMotion.Continuity.Chaining

Chaining #

References #

def π {E : Type u_1} [Dist E] (s : Finset E) (x : E) :
E

Closest point to x in the finite set s.

Equations
Instances For
    theorem π_mem {E : Type u_1} {x : E} [Dist E] {s : Finset E} :
    π s x s
    theorem dist_π_le {E : Type u_1} {x y : E} [Dist E] {s : Finset E} (hy : y s) :
    dist x (π s x) dist x y
    noncomputable def πCov {E : Type u_1} [Dist E] (A : Set E) (ε : ) (x : E) :
    E

    Closest point to x in a minimal ε-cover of A.

    Equations
    Instances For
      theorem dist_πCov {E : Type u_1} {x : E} {A : Set E} [Dist E] {ε : } (hxA : x A) :
      dist x (πCov A ε x) ε
      theorem dist_πCov_πCov_le_add {E : Type u_1} {x : E} {A : Set E} [PseudoMetricSpace E] {ε₁ ε₂ : } (hxA : x A) :
      dist (πCov A ε₁ x) (πCov A ε₂ x) ε₁ + ε₂
      theorem dist_πCov_succ_le_two_mul {E : Type u_1} {x : E} {A : Set E} [PseudoMetricSpace E] {ε : } ( : Antitone ε) {i : } (hxA : x A) :
      dist (πCov A (ε i) x) (πCov A (ε (i + 1)) x) 2 * ε i
      theorem dist_πCov_le_add_dist {E : Type u_1} {x y : E} {A : Set E} [PseudoMetricSpace E] {ε : } (hxA : x A) (hyA : y A) :
      dist (πCov A ε x) (πCov A ε y) 2 * ε + dist x y