HasBoundedCoveringNumber #
structure
HasBoundedCoveringNumber
{T : Type u_1}
[PseudoEMetricSpace T]
(A : Set T)
(c : ENNReal)
(d : ℝ)
:
A set A in a pseudoemetric space has bounded covering number with constant c and exponent
d if it has finite diameter and for all ε ∈ (0, diam(A)], the covering number of A
at scale ε is bounded by c * ε^{-d}.
- coveringNumber_le (ε : NNReal) : ↑ε ≤ EMetric.diam A → ↑(Metric.coveringNumber ε A) ≤ c * (↑ε)⁻¹ ^ d
Instances For
theorem
HasBoundedCoveringNumber.coveringNumber_lt_top
{T : Type u_1}
[PseudoEMetricSpace T]
{A : Set T}
{c : ENNReal}
{ε : NNReal}
{d : ℝ}
(h : HasBoundedCoveringNumber A c d)
(hε_ne : ε ≠ 0)
(hc : c ≠ ⊤)
(hd : 0 ≤ d)
:
theorem
HasBoundedCoveringNumber.subset
{T : Type u_1}
[PseudoEMetricSpace T]
{A : Set T}
{c : ENNReal}
{d : ℝ}
{B : Set T}
(h : HasBoundedCoveringNumber A c d)
(hBA : B ⊆ A)
(hd : 0 ≤ d)
:
HasBoundedCoveringNumber B (2 ^ d * c) d
structure
IsCoverWithBoundedCoveringNumber
{T : Type u_1}
[PseudoEMetricSpace T]
(C : ℕ → Set T)
(A : Set T)
(c : ℕ → ENNReal)
(d : ℕ → ℝ)
:
- totallyBounded (n : ℕ) : TotallyBounded (C n)
- hasBoundedCoveringNumber (n : ℕ) : HasBoundedCoveringNumber (C n) (c n) (d n)