Documentation

BrownianMotion.Continuity.HasBoundedInternalCoveringNumber

HasBoundedCoveringNumber #

structure HasBoundedCoveringNumber {T : Type u_1} [PseudoEMetricSpace T] (A : Set T) (c : ENNReal) (d : ) :

A set A in a pseudoemetric space has bounded covering number with constant c and exponent d if it has finite diameter and for all ε ∈ (0, diam(A)], the covering number of A at scale ε is bounded by c * ε^{-d}.

Instances For
    theorem HasBoundedCoveringNumber.coveringNumber_lt_top {T : Type u_1} [PseudoEMetricSpace T] {A : Set T} {c : ENNReal} {ε : NNReal} {d : } (h : HasBoundedCoveringNumber A c d) (hε_ne : ε 0) (hc : c ) (hd : 0 d) :
    theorem HasBoundedCoveringNumber.subset {T : Type u_1} [PseudoEMetricSpace T] {A : Set T} {c : ENNReal} {d : } {B : Set T} (h : HasBoundedCoveringNumber A c d) (hBA : B A) (hd : 0 d) :
    structure IsCoverWithBoundedCoveringNumber {T : Type u_1} [PseudoEMetricSpace T] (C : Set T) (A : Set T) (c : ENNReal) (d : ) :
    Instances For
      theorem isCoverWithBoundedCoveringNumber_Ico_nnreal :
      IsCoverWithBoundedCoveringNumber (fun (n : ) => Set.Ico 0 (n + 1)) Set.univ (fun (n : ) => 3 * (n + 1)) fun (x : ) => 1