Documentation

BrownianMotion.Continuity.LogSizeBallSequence

TODO #

theorem exists_radius_le {T : Type u_1} [PseudoEMetricSpace T] {a : ENNReal} (t : T) (V : Finset T) (ha : 1 < a) (c : ENNReal) :
∃ (r : ), 1 r {xV | edist t x r * c}.card a ^ r
noncomputable def logSizeRadius {T : Type u_1} [PseudoEMetricSpace T] (t : T) (V : Finset T) (a c : ENNReal) :
Equations
Instances For
    theorem one_le_logSizeRadius {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {V : Finset T} {t : T} (ha : 1 < a) :
    1 logSizeRadius t V a c
    theorem card_le_logSizeRadius_le {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {V : Finset T} {t : T} (ha : 1 < a) :
    {xV | edist t x (logSizeRadius t V a c) * c}.card a ^ logSizeRadius t V a c
    theorem card_le_logSizeRadius_ge {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {V : Finset T} {t : T} (ha : 1 < a) (ht : t V) :
    a ^ (logSizeRadius t V a c - 1) {xV | edist t x ((logSizeRadius t V a c) - 1) * c}.card
    structure logSizeBallStruct (T : Type u_2) :
    Type u_2
    Instances For
      noncomputable def logSizeBallStruct.smallBall {T : Type u_1} [PseudoEMetricSpace T] (struct : logSizeBallStruct T) (c : ENNReal) :
      Equations
      Instances For
        noncomputable def logSizeBallStruct.ball {T : Type u_1} [PseudoEMetricSpace T] (struct : logSizeBallStruct T) (c : ENNReal) :
        Equations
        Instances For
          noncomputable def logSizeBallSeq {T : Type u_1} [PseudoEMetricSpace T] (J : Finset T) (hJ : J.Nonempty) (a c : ENNReal) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem finset_logSizeBallSeq_zero {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) :
            (logSizeBallSeq J hJ a c 0).finset = J
            theorem point_logSizeBallSeq_zero {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) :
            theorem radius_logSizeBallSeq_zero {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) :
            theorem finset_logSizeBallSeq_add_one {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) :
            (logSizeBallSeq J hJ a c (i + 1)).finset = (logSizeBallSeq J hJ a c i).finset \ (logSizeBallSeq J hJ a c i).smallBall c
            theorem point_logSizeBallSeq_add_one {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) :
            (logSizeBallSeq J hJ a c (i + 1)).point = if hV' : (logSizeBallSeq J hJ a c (i + 1)).finset.Nonempty then Exists.choose hV' else (logSizeBallSeq J hJ a c i).point
            theorem radius_logSizeBallSeq_add_one {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) :
            (logSizeBallSeq J hJ a c (i + 1)).radius = logSizeRadius (logSizeBallSeq J hJ a c (i + 1)).point (logSizeBallSeq J hJ a c (i + 1)).finset a c
            theorem radius_logSizeBallSeq_le {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {n : } {J : Finset T} (hJ : J.Nonempty) (hJ_card : J.card a ^ n) (i : ) :
            (logSizeBallSeq J hJ a c i).radius n
            theorem finset_logSizeBallSeq_add_one_subset {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) :
            (logSizeBallSeq J hJ a c (i + 1)).finset (logSizeBallSeq J hJ a c i).finset
            theorem point_mem_finset_logSizeBallSeq {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) (h : (logSizeBallSeq J hJ a c i).finset.Nonempty) :
            (logSizeBallSeq J hJ a c i).point (logSizeBallSeq J hJ a c i).finset
            theorem point_notMem_finset_logSizeBallSeq_add_one {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) (h : (logSizeBallSeq J hJ a c i).finset.Nonempty) :
            (logSizeBallSeq J hJ a c i).point(logSizeBallSeq J hJ a c (i + 1)).finset
            theorem card_finset_logSizeBallSeq_add_one_lt {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) (h : (logSizeBallSeq J hJ a c i).finset.Nonempty) :
            (logSizeBallSeq J hJ a c (i + 1)).finset.card < (logSizeBallSeq J hJ a c i).finset.card
            theorem card_finset_logSizeBallSeq_le {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i : ) :
            (logSizeBallSeq J hJ a c i).finset.card J.card - i
            theorem disjoint_smallBall_logSizeBallSeq {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} (hJ : J.Nonempty) (i j : ) (hij : i j) :
            Disjoint ((logSizeBallSeq J hJ a c i).smallBall c) ((logSizeBallSeq J hJ a c j).smallBall c)
            noncomputable def pairSetSeq {T : Type u_1} [PseudoEMetricSpace T] (J : Finset T) (a c : ENNReal) (n : ) :
            Finset (T × T)
            Equations
            Instances For
              noncomputable def pairSet {T : Type u_1} [PseudoEMetricSpace T] (J : Finset T) (a c : ENNReal) :
              Finset (T × T)
              Equations
              Instances For
                theorem pairSet_subset {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} :
                pairSet J a c J.product J
                theorem card_pairSet_le {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {n : } {J : Finset T} (hJ_card : J.card a ^ n) (ha : 1 < a) :
                (pairSet J a c).card a * J.card
                theorem edist_le_of_mem_pairSet {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {n : } {J : Finset T} (hJ_card : J.card a ^ n) (ha : 1 < a) (hc : c 0) {s t : T} (h : (s, t) pairSet J a c) :
                edist s t n * c
                theorem iSup_edist_pairSet {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {J : Finset T} {E : Type u_2} [PseudoEMetricSpace E] (f : TE) :
                ⨆ (s : T), ⨆ (t : T), ⨆ (_ : s J), ⨆ (_ : t J), ⨆ (_ : edist s t c), edist (f s) (f t) 2 * ppairSet J a c, edist (f p.1) (f p.2)
                theorem pair_reduction {T : Type u_1} [PseudoEMetricSpace T] {a c : ENNReal} {n : } (J : Finset T) (hJ : J.card a ^ n) (ha : 1 < a) (hc : c 0) (E : Type u_2) [PseudoEMetricSpace E] :
                KJ.product J, K.card a * J.card (∀ (s t : T), (s, t) Kedist s t n * c) ∀ (f : TE), ⨆ (s : T), ⨆ (t : T), ⨆ (_ : s J), ⨆ (_ : t J), ⨆ (_ : edist s t c), edist (f s) (f t) 2 * pK, edist (f p.1) (f p.2)