Documentation

BrownianMotion.Continuity.CoveringNumber

Covering and packing numbers #

References #

def IsCover {E : Type u_1} [EDist E] (C : Set E) (ε : ENNReal) (A : Set E) :

A set C is an r-cover of another set A if every point in A belongs to a ball with radius r around a point of C.

Equations
Instances For
    def IsSeparated {E : Type u_1} [EDist E] (C : Set E) (r : ENNReal) :

    A set C is a r-separated if all pairs of points a,b of C satisfy r < dist a b.

    Equations
    Instances For
      noncomputable def externalCoveringNumber {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :
      Equations
      Instances For
        noncomputable def internalCoveringNumber {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :
        Equations
        Instances For
          noncomputable def packingNumber {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :
          Equations
          Instances For
            theorem EMetric.isCover_iff {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} :
            IsCover C ε A A xC, closedBall x ε
            @[simp]
            theorem isSeparated_empty {E : Type u_1} [EDist E] (r : ENNReal) :
            theorem subset_iUnion_of_isCover {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} (hC : IsCover C ε A) :
            A xC, EMetric.closedBall x ε
            theorem TotallyBounded.exists_isCover {E : Type u_1} [PseudoEMetricSpace E] {A : Set E} (hA : TotallyBounded A) (r : ENNReal) (hr : 0 < r) :
            ∃ (C : Finset E), C A IsCover (↑C) r A
            theorem IsCover.Nonempty {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} (hC : IsCover C ε A) (hA : A.Nonempty) :
            theorem exists_finset_card_eq_internalCoveringNumber {E : Type u_1} [PseudoEMetricSpace E] {A : Set E} (h : TotallyBounded A) (r : ENNReal) :
            ∃ (C : Finset E), C A IsCover (↑C) r A C.card = internalCoveringNumber r A
            noncomputable def minimalCover {E : Type u_1} [PseudoEMetricSpace E] (r : ENNReal) (A : Set E) :

            An internal r-cover of A with minimal cardinal.

            Equations
            Instances For
              theorem minimalCover_subset {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} :
              (minimalCover r A) A
              theorem isCover_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} (h : TotallyBounded A) :
              IsCover (↑(minimalCover r A)) r A
              theorem exists_finset_card_eq_packingNumber {E : Type u_1} {r : ENNReal} {A : Set E} [EDist E] (h : packingNumber r A < ) :
              ∃ (C : Finset E), C A IsSeparated (↑C) r C.card = packingNumber r A
              noncomputable def maximalSeparatedSet {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :

              A maximal r-separated finite subset of A.

              Equations
              Instances For
                theorem maximalSeparatedSet_subset {E : Type u_1} {r : ENNReal} {A : Set E} [EDist E] :
                theorem card_maximalSeparatedSet {E : Type u_1} {r : ENNReal} {A : Set E} [EDist E] (h : packingNumber r A < ) :
                theorem card_le_of_isSeparated {E : Type u_1} {r : ENNReal} {A : Set E} [EDist E] {C : Finset E} (h_subset : C A) (h : IsSeparated (↑C) r) :