Equations
- packingNumber r A = ⨆ (C : Finset E), ⨆ (_ : ↑C ⊆ A), ⨆ (_ : IsSeparated (↑C) r), ↑C.card
Instances For
theorem
EMetric.isCover_iff
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
:
theorem
subset_iUnion_of_isCover
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
(hC : IsCover C ε A)
:
theorem
TotallyBounded.exists_isCover
{E : Type u_1}
[PseudoEMetricSpace E]
{A : Set E}
(hA : TotallyBounded A)
(r : ENNReal)
(hr : 0 < r)
:
theorem
IsCover.Nonempty
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
(hC : IsCover C ε A)
(hA : A.Nonempty)
:
C.Nonempty
theorem
exists_finset_card_eq_internalCoveringNumber
{E : Type u_1}
[PseudoEMetricSpace E]
{A : Set E}
(h : TotallyBounded A)
(r : ENNReal)
:
noncomputable def
minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
:
Finset E
An internal r
-cover of A
with minimal cardinal.
Equations
- minimalCover r A = if h : TotallyBounded A then ⋯.choose else ∅
Instances For
theorem
isCover_minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h : TotallyBounded A)
:
IsCover (↑(minimalCover r A)) r A
theorem
card_minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h : TotallyBounded A)
:
theorem
exists_finset_card_eq_packingNumber
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[EDist E]
(h : packingNumber r A < ⊤)
:
∃ (C : Finset E), ↑C ⊆ A ∧ IsSeparated (↑C) r ∧ ↑C.card = packingNumber r A
A maximal r
-separated finite subset of A
.
Equations
- maximalSeparatedSet r A = if h : packingNumber r A < ⊤ then ⋯.choose else ∅
Instances For
theorem
isSeparated_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[EDist E]
:
IsSeparated (↑(maximalSeparatedSet r A)) r
theorem
card_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[EDist E]
(h : packingNumber r A < ⊤)
:
theorem
card_le_of_isSeparated
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[EDist E]
{C : Finset E}
(h_subset : ↑C ⊆ A)
(h : IsSeparated (↑C) r)
:
theorem
isCover_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
(h : packingNumber r A < ⊤)
:
IsCover (↑(maximalSeparatedSet r A)) r A
theorem
internalCoveringNumber_le_packingNumber
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
:
theorem
packingNumber_two_le_externalCoveringNumber
{E : Type u_1}
[EDist E]
(r : ENNReal)
(A : Set E)
:
theorem
externalCoveringNumber_le_internalCoveringNumber
{E : Type u_1}
[EDist E]
(r : ENNReal)
(A : Set E)
:
theorem
internalCoveringNumber_two_le_externalCoveringNumber
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
: