Equations
- packingNumber r A = ⨆ (C : Finset α), ⨆ (_ : ↑C ⊆ A), ⨆ (_ : IsSeparated (↑C) r), ↑C.card
Instances For
An internal r
-cover of A
with minimal cardinal.
Equations
- minimalCover r A = if h : internalCoveringNumber r A < ⊤ then ⋯.choose else ∅
Instances For
theorem
isCover_minimalCover
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
(h : internalCoveringNumber r A < ⊤)
:
IsCover (↑(minimalCover r A)) r A
theorem
card_minimalCover
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
(h : internalCoveringNumber r A < ⊤)
:
theorem
exists_finset_card_eq_packingNumber
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
(h : packingNumber r A < ⊤)
:
∃ (C : Finset α), ↑C ⊆ A ∧ IsSeparated (↑C) r ∧ ↑C.card = packingNumber r A
A maximal r
-separated finite subset of A
.
Equations
- maximalSeparatedSet r A = if h : packingNumber r A < ⊤ then ⋯.choose else ∅
Instances For
theorem
isSeparated_maximalSeparatedSet
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
:
IsSeparated (↑(maximalSeparatedSet r A)) r
theorem
card_maximalSeparatedSet
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
(h : packingNumber r A < ⊤)
:
theorem
card_le_of_isSeparated
{α : Type u_1}
{r : ℝ}
{A : Set α}
[Dist α]
{C : Finset α}
(h_subset : ↑C ⊆ A)
(h : IsSeparated (↑C) r)
:
theorem
isCover_maximalSeparatedSet
{α : Type u_1}
{r : ℝ}
{A : Set α}
[PseudoMetricSpace α]
(h : packingNumber r A < ⊤)
(hr : 0 ≤ r)
:
IsCover (↑(maximalSeparatedSet r A)) r A
theorem
internalCoveringNumber_le_packingNumber
{α : Type u_1}
[PseudoMetricSpace α]
(r : ℝ)
(A : Set α)
(hr : 0 ≤ r)
:
theorem
externalCoveringNumber_le_internalCoveringNumber
{α : Type u_1}
[Dist α]
(r : ℝ)
(A : Set α)
:
theorem
internalCoveringNumber_two_le_externalCoveringNumber
{α : Type u_1}
[PseudoMetricSpace α]
(r : ℝ)
(A : Set α)
(hr : 0 ≤ r)
: