Documentation

BrownianMotion.Continuity.CoveringNumber

Covering and packing numbers #

References #

noncomputable def Metric.externalCoveringNumber {X : Type u_1} [PseudoEMetricSpace X] (ε : NNReal) (A : Set X) :

The external covering number of a set A in X for radius ε is the minimal cardinality (in ℕ∞) of an ε-cover by points in X (not necessarily in A).

Equations
Instances For
    noncomputable def Metric.coveringNumber {X : Type u_1} [PseudoEMetricSpace X] (ε : NNReal) (A : Set X) :

    The covering number (or internal covering number) of a set A for radius ε is the minimal cardinality (in ℕ∞) of an ε-cover contained in A.

    Equations
    Instances For
      noncomputable def Metric.packingNumber {X : Type u_1} [PseudoEMetricSpace X] (ε : NNReal) (A : Set X) :

      The packing number of a set A for radius ε is the maximal cardinality (in ℕ∞) of an ε-separated set in A.

      Equations
      Instances For
        @[simp]
        @[simp]
        theorem Metric.coveringNumber_eq_zero {X : Type u_1} [PseudoEMetricSpace X] {A : Set X} {ε : NNReal} :
        @[simp]
        theorem Metric.coveringNumber_pos {X : Type u_1} [PseudoEMetricSpace X] {A : Set X} {ε : NNReal} (hA : A.Nonempty) :
        theorem Metric.IsCover.coveringNumber_le_encard {X : Type u_1} [PseudoEMetricSpace X] {A C : Set X} {ε : NNReal} (h_subset : C A) (hC : IsCover ε A C) :
        theorem Metric.coveringNumber_anti {X : Type u_1} [PseudoEMetricSpace X] {A : Set X} {ε δ : NNReal} (h : ε δ) :
        theorem Metric.coveringNumber_eq_one_of_ediam_le {X : Type u_1} [PseudoEMetricSpace X] {A : Set X} {ε : NNReal} (h_nonempty : A.Nonempty) (hA : EMetric.diam A ε) :

        The packing number of a set A for radius 2 * ε is at most the external covering number of A for radius ε.

        @[simp]
        theorem not_isCover_empty {E : Type u_1} [PseudoEMetricSpace E] (ε : NNReal) (A : Set E) (h_nonempty : A.Nonempty) :
        @[simp]
        theorem isCover_singleton_finset_of_diam_le {E : Type u_1} [PseudoEMetricSpace E] {ε : NNReal} {A : Set E} {a : E} (hA : EMetric.diam A ε) (ha : a A) :
        @[simp]
        theorem subset_iUnion_of_isCover {E : Type u_1} [PseudoEMetricSpace E] {ε : NNReal} {A C : Set E} (hC : Metric.IsCover ε A C) :
        A xC, EMetric.closedBall x ε
        theorem TotallyBounded.exists_isCover {E : Type u_1} [PseudoEMetricSpace E] {A : Set E} (hA : TotallyBounded A) (r : NNReal) (hr : 0 < r) :
        ∃ (C : Finset E), C A Metric.IsCover r A C
        theorem IsCover.Nonempty {E : Type u_1} [PseudoEMetricSpace E] {ε : NNReal} {A C : Set E} (hC : Metric.IsCover ε A C) (hA : A.Nonempty) :
        theorem exists_set_encard_eq_coveringNumber {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
        noncomputable def minimalCover {E : Type u_1} [PseudoEMetricSpace E] (r : NNReal) (A : Set E) (hr : 0 < r) :
        Set E

        An internal r-cover of A with minimal cardinal.

        Equations
        Instances For
          theorem minimalCover_subset {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} (hr : 0 < r) :
          minimalCover r A hr A
          theorem finite_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} (hr : 0 < r) :
          theorem isCover_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
          theorem card_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
          noncomputable def maximalSeparatedSet {E : Type u_1} [PseudoEMetricSpace E] (r : NNReal) (A : Set E) :
          Set E

          A maximal r-separated finite subset of A.

          Equations
          Instances For
            theorem card_le_of_isSeparated {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A C : Set E} (h_subset : C A) (h_sep : Metric.IsSeparated (↑r) C) (h : Metric.packingNumber r A < ) :
            theorem Isometry.isCover_image_iff {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} {F : Type u_2} [PseudoEMetricSpace F] {f : EF} (hf : Isometry f) (C : Set E) :
            Metric.IsCover r (f '' A) (f '' C) Metric.IsCover r A C
            theorem Isometry.coveringNumber_image' {E : Type u_1} [PseudoEMetricSpace E] {r : NNReal} {A : Set E} {F : Type u_2} [PseudoEMetricSpace F] {f : EF} (hf : Isometry f) (hf_inj : Set.InjOn f A) :
            theorem Isometry.coveringNumber_image {r : NNReal} {E : Type u_2} {F : Type u_3} [EMetricSpace E] [PseudoEMetricSpace F] {f : EF} (hf : Isometry f) {A : Set E} :
            theorem coveringNumber_Icc_zero_one_le_one_div {ε : NNReal} ( : ε 1) :
            (Metric.coveringNumber ε (Set.Icc 0 1)) 1 / ε
            theorem EMetric.isCover_iff_subset_iUnion_closedBall {X : Type u_1} [PseudoEMetricSpace X] {ε : NNReal} {s N : Set X} :
            Metric.IsCover ε s N s yN, closedBall y ε
            theorem coveringNumber_closedBall_le_three_mul {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] [MeasurableSpace E] [BorelSpace E] {ε : NNReal} [Nontrivial E] {x : E} {r : NNReal} (hr_zero : r 0) ( : ε r) :