Documentation

BrownianMotion.Continuity.CoveringNumber

Covering and packing numbers #

References #

def IsCover {E : Type u_1} [EDist E] (C : Set E) (ε : ENNReal) (A : Set E) :

A set C is an r-cover of another set A if every point in A belongs to a ball with radius r around a point of C.

Equations
Instances For
    noncomputable def externalCoveringNumber {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :
    Equations
    Instances For
      noncomputable def internalCoveringNumber {E : Type u_1} [EDist E] (r : ENNReal) (A : Set E) :
      Equations
      Instances For
        noncomputable def packingNumber {E : Type u_1} [PseudoEMetricSpace E] (r : ENNReal) (A : Set E) :
        Equations
        Instances For
          theorem internalCoveringNumber_le_of_isCover {E : Type u_1} [EDist E] {C : Finset E} {r : ENNReal} {A : Set E} (C_sub : C A) (C_cov : IsCover (↑C) r A) :
          @[simp]
          theorem IsCover.self {E : Type u_1} [PseudoEMetricSpace E] (A : Set E) (r : ENNReal) :
          IsCover A r A
          theorem EMetric.isCover_iff {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} :
          IsCover C ε A A xC, closedBall x ε
          theorem isCover_empty_iff {E : Type u_1} [EDist E] (ε : ENNReal) (A : Set E) :
          theorem isCover_empty {E : Type u_1} [EDist E] (ε : ENNReal) :
          theorem not_isCover_empty {E : Type u_1} [EDist E] (ε : ENNReal) (A : Set E) (h_nonempty : A.Nonempty) :
          theorem isCover_singleton_of_diam_le {E : Type u_1} [PseudoEMetricSpace E] {ε : ENNReal} {A : Set E} {a : E} (hA : EMetric.diam A ε) (ha : a A) :
          IsCover {a} ε A
          theorem isCover_singleton_finset_of_diam_le {E : Type u_1} [PseudoEMetricSpace E] {ε : ENNReal} {A : Set E} {a : E} (hA : EMetric.diam A ε) (ha : a A) :
          IsCover (↑{a}) ε A
          theorem cover_eq_of_lt_iInf_edist {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} (hC : IsCover C ε A) (hC_subset : C A) ( : ε < ⨅ (s : A), ⨅ (t : { t : A // s t }), edist s t) :
          C = A
          theorem IsCover.mono {E : Type u_1} [EDist E] {C : Set E} {ε ε' : ENNReal} {A : Set E} (h : ε ε') (hC : IsCover C ε A) :
          IsCover C ε' A
          theorem IsCover.subset {E : Type u_1} [EDist E] {C : Set E} {ε : ENNReal} {A B : Set E} (h : A B) (hC : IsCover C ε B) :
          IsCover C ε A
          theorem internalCoveringNumber_anti {E : Type u_1} [EDist E] {r r' : ENNReal} {A : Set E} (h : r r') :
          theorem subset_iUnion_of_isCover {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} (hC : IsCover C ε A) :
          A xC, EMetric.closedBall x ε
          theorem TotallyBounded.exists_isCover {E : Type u_1} [PseudoEMetricSpace E] {A : Set E} (hA : TotallyBounded A) (r : ENNReal) (hr : 0 < r) :
          ∃ (C : Finset E), C A IsCover (↑C) r A
          theorem IsCover.Nonempty {E : Type u_1} [PseudoEMetricSpace E] {C : Set E} {ε : ENNReal} {A : Set E} (hC : IsCover C ε A) (hA : A.Nonempty) :
          theorem exists_finset_card_eq_internalCoveringNumber {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
          ∃ (C : Finset E), C A IsCover (↑C) r A C.card = internalCoveringNumber r A
          noncomputable def minimalCover {E : Type u_1} [PseudoEMetricSpace E] (r : ENNReal) (A : Set E) (hr : 0 < r) :

          An internal r-cover of A with minimal cardinal.

          Equations
          Instances For
            theorem minimalCover_subset {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} (hr : 0 < r) :
            (minimalCover r A hr) A
            theorem isCover_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
            IsCover (↑(minimalCover r A hr)) r A
            theorem card_minimalCover {E : Type u_1} [PseudoEMetricSpace E] {r : ENNReal} {A : Set E} (h : TotallyBounded A) (hr : 0 < r) :
            theorem exists_finset_card_eq_packingNumber {E : Type u_1} {r : ENNReal} {A : Set E} [PseudoEMetricSpace E] (h : packingNumber r A < ) :
            ∃ (C : Finset E), C A Metric.IsSeparated r C C.card = packingNumber r A
            noncomputable def maximalSeparatedSet {E : Type u_1} [PseudoEMetricSpace E] (r : ENNReal) (A : Set E) :

            A maximal r-separated finite subset of A.

            Equations
            Instances For
              theorem card_le_of_isSeparated {E : Type u_1} {r : ENNReal} {A : Set E} [PseudoEMetricSpace E] {C : Finset E} (h_subset : C A) (h_sep : Metric.IsSeparated r C) (h : packingNumber r A < ) :
              theorem internalCoveringNumber_smul {E : Type u_1} [NormedAddCommGroup E] [Module E] {r : ENNReal} {A : Set E} {c : NNReal} (hc : c 0) :