Equations
- packingNumber r A = ⨆ (C : Finset E), ⨆ (_ : ↑C ⊆ A), ⨆ (_ : Metric.IsSeparated r ↑C), ↑C.card
Instances For
@[simp]
theorem
Set.Finite.internalCoveringNumber_le_ncard
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
(ha : A.Finite)
:
theorem
EMetric.isCover_iff
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
:
@[simp]
@[simp]
theorem
isCover_singleton_of_diam_le
{E : Type u_1}
[PseudoEMetricSpace E]
{ε : ENNReal}
{A : Set E}
{a : E}
(hA : EMetric.diam A ≤ ε)
(ha : a ∈ A)
:
theorem
isCover_singleton_finset_of_diam_le
{E : Type u_1}
[PseudoEMetricSpace E]
{ε : ENNReal}
{A : Set E}
{a : E}
(hA : EMetric.diam A ≤ ε)
(ha : a ∈ A)
:
theorem
internalCoveringNumber_eq_one_of_diam_le
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h_nonempty : A.Nonempty)
(hA : EMetric.diam A ≤ r)
:
theorem
externalCoveringNumber_eq_one_of_diam_le
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h_nonempty : A.Nonempty)
(hA : EMetric.diam A ≤ r)
:
theorem
internalCoveringNumber_le_one_of_diam_le
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(hA : EMetric.diam A ≤ r)
:
theorem
subset_iUnion_of_isCover
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
(hC : IsCover C ε A)
:
theorem
TotallyBounded.exists_isCover
{E : Type u_1}
[PseudoEMetricSpace E]
{A : Set E}
(hA : TotallyBounded A)
(r : ENNReal)
(hr : 0 < r)
:
theorem
IsCover.Nonempty
{E : Type u_1}
[PseudoEMetricSpace E]
{C : Set E}
{ε : ENNReal}
{A : Set E}
(hC : IsCover C ε A)
(hA : A.Nonempty)
:
C.Nonempty
theorem
exists_finset_card_eq_internalCoveringNumber
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h : TotallyBounded A)
(hr : 0 < r)
:
noncomputable def
minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
(hr : 0 < r)
:
Finset E
An internal r
-cover of A
with minimal cardinal.
Equations
- minimalCover r A hr = if h : TotallyBounded A then ⋯.choose else ∅
Instances For
theorem
minimalCover_subset
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(hr : 0 < r)
:
theorem
isCover_minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h : TotallyBounded A)
(hr : 0 < r)
:
IsCover (↑(minimalCover r A hr)) r A
theorem
card_minimalCover
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(h : TotallyBounded A)
(hr : 0 < r)
:
theorem
exists_finset_card_eq_packingNumber
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
(h : packingNumber r A < ⊤)
:
∃ (C : Finset E), ↑C ⊆ A ∧ Metric.IsSeparated r ↑C ∧ ↑C.card = packingNumber r A
noncomputable def
maximalSeparatedSet
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
:
Finset E
A maximal r
-separated finite subset of A
.
Equations
- maximalSeparatedSet r A = if h : packingNumber r A < ⊤ then ⋯.choose else ∅
Instances For
theorem
maximalSeparatedSet_subset
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
:
theorem
isSeparated_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
:
Metric.IsSeparated r ↑(maximalSeparatedSet r A)
theorem
card_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
(h : packingNumber r A < ⊤)
:
theorem
card_le_of_isSeparated
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
{C : Finset E}
(h_subset : ↑C ⊆ A)
(h_sep : Metric.IsSeparated r ↑C)
(h : packingNumber r A < ⊤)
:
theorem
isCover_maximalSeparatedSet
{E : Type u_1}
{r : ENNReal}
{A : Set E}
[PseudoEMetricSpace E]
(h : packingNumber r A < ⊤)
:
IsCover (↑(maximalSeparatedSet r A)) r A
theorem
internalCoveringNumber_le_packingNumber
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
:
theorem
packingNumber_two_le_externalCoveringNumber
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
(A : Set E)
(hr : r ≠ ⊤)
:
theorem
externalCoveringNumber_le_internalCoveringNumber
{E : Type u_1}
[EDist E]
(r : ENNReal)
(A : Set E)
:
theorem
internalCoveringNumber_two_le_externalCoveringNumber
{E : Type u_1}
[PseudoEMetricSpace E]
(r : ENNReal)
(A : Set E)
:
theorem
internalCoveringNumber_subset_le
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
(hr : r ≠ ⊤)
{A B : Set E}
(h : A ⊆ B)
:
theorem
internalCoveringNumber_le_encard
{E : Type u_1}
[PseudoEMetricSpace E]
{r : ENNReal}
{A : Set E}
(hr : 0 < r)
:
theorem
internalCoveringNumber_smul
{E : Type u_1}
[NormedAddCommGroup E]
[Module ℝ E]
{r : ENNReal}
{A : Set E}
{c : NNReal}
(hc : c ≠ 0)
:
theorem
volume_le_of_isCover
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{A : Set E}
{C : Finset E}
{ε : ENNReal}
(hC : IsCover (↑C) ε A)
:
theorem
volume_le_externalCoveringNumber_mul
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(A : Set E)
(ε : ENNReal)
:
theorem
le_volume_of_isSeparated
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{A : Set E}
{C : Finset E}
{ε : ENNReal}
(hC : Metric.IsSeparated ε ↑C)
(h_subset : ↑C ⊆ A)
:
↑C.card * MeasureTheory.volume (EMetric.closedBall 0 (ε / 2)) ≤ MeasureTheory.volume (A + EMetric.closedBall 0 (ε / 2))
theorem
packingNumber_mul_le_volume
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(A : Set E)
(ε : ENNReal)
:
↑(packingNumber ε A) * MeasureTheory.volume (EMetric.closedBall 0 (ε / 2)) ≤ MeasureTheory.volume (A + EMetric.closedBall 0 (ε / 2))
theorem
volume_div_le_internalCoveringNumber
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(A : Set E)
(ε : ENNReal)
:
theorem
internalCoveringNumber_le_volume_div
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(A : Set E)
(ε : ENNReal)
:
↑(internalCoveringNumber ε A) ≤ MeasureTheory.volume (A + EMetric.closedBall 0 (ε / 2)) / MeasureTheory.volume (EMetric.closedBall 0 (ε / 2))
theorem
internalCoveringNumber_closedBall_ge
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(ε : ENNReal)
:
theorem
internalCoveringNumber_closedBall_le
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(ε : ENNReal)
: