Documentation

BrownianMotion.Continuity.CoveringNumber

Covering and packing numbers #

References #

def IsCover {α : Type u_1} [Dist α] (C : Set α) (r : ) (A : Set α) :

A set C is an r-cover of another set A if every point in A belongs to a ball with radius r around a point of C.

Equations
Instances For
    def IsSeparated {α : Type u_1} [Dist α] (C : Set α) (r : ) :

    A set C is a r-separated if all pairs of points a,b of C satisfy r < dist a b.

    Equations
    Instances For
      @[simp]
      theorem isSeparated_empty {α : Type u_1} [Dist α] (r : ) :
      noncomputable def externalCoveringNumber {α : Type u_1} [Dist α] (r : ) (A : Set α) :
      Equations
      Instances For
        noncomputable def internalCoveringNumber {α : Type u_1} [Dist α] (r : ) (A : Set α) :
        Equations
        Instances For
          noncomputable def packingNumber {α : Type u_1} [Dist α] (r : ) (A : Set α) :
          Equations
          Instances For
            theorem exists_finset_card_eq_internalCoveringNumber {α : Type u_1} {r : } {A : Set α} [Dist α] (h : internalCoveringNumber r A < ) :
            ∃ (C : Finset α), C A IsCover (↑C) r A C.card = internalCoveringNumber r A
            noncomputable def minimalCover {α : Type u_1} [Dist α] (r : ) (A : Set α) :

            An internal r-cover of A with minimal cardinal.

            Equations
            Instances For
              theorem minimalCover_subset {α : Type u_1} {r : } {A : Set α} [Dist α] :
              (minimalCover r A) A
              theorem isCover_minimalCover {α : Type u_1} {r : } {A : Set α} [Dist α] (h : internalCoveringNumber r A < ) :
              IsCover (↑(minimalCover r A)) r A
              theorem card_minimalCover {α : Type u_1} {r : } {A : Set α} [Dist α] (h : internalCoveringNumber r A < ) :
              theorem exists_finset_card_eq_packingNumber {α : Type u_1} {r : } {A : Set α} [Dist α] (h : packingNumber r A < ) :
              ∃ (C : Finset α), C A IsSeparated (↑C) r C.card = packingNumber r A
              noncomputable def maximalSeparatedSet {α : Type u_1} [Dist α] (r : ) (A : Set α) :

              A maximal r-separated finite subset of A.

              Equations
              Instances For
                theorem maximalSeparatedSet_subset {α : Type u_1} {r : } {A : Set α} [Dist α] :
                theorem isSeparated_maximalSeparatedSet {α : Type u_1} {r : } {A : Set α} [Dist α] :
                theorem card_maximalSeparatedSet {α : Type u_1} {r : } {A : Set α} [Dist α] (h : packingNumber r A < ) :
                theorem card_le_of_isSeparated {α : Type u_1} {r : } {A : Set α} [Dist α] {C : Finset α} (h_subset : C A) (h : IsSeparated (↑C) r) :
                theorem isCover_maximalSeparatedSet {α : Type u_1} {r : } {A : Set α} [PseudoMetricSpace α] (h : packingNumber r A < ) (hr : 0 r) :