Documentation

BrownianMotion.Auxiliary.FiniteInf

theorem Finset.Nonempty.sSup_eq_max' {α : Type u_1} [CompleteLinearOrder α] {s : Finset α} (h : s.Nonempty) :
sSup s = s.max' h
theorem Finset.iSup_eq_max'_image {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] (f : ια) {s : Finset ι} (h : s.Nonempty) (h' : (image f s).Nonempty := by simpa using h) :
is, f i = (image f s).max' h'
theorem Finset.iInf_eq_min'_image {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] (f : ια) {s : Finset ι} (h : s.Nonempty) (h' : (image f s).Nonempty := by simpa using h) :
is, f i = (image f s).min' h'
theorem Finset.iInf_mem_image {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] (f : ια) {s : Finset ι} (h : s.Nonempty) :
is, f i image f s
theorem Set.Finite.iInf_mem_image {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] (f : ια) {s : Set ι} (h : s.Nonempty) (hs : s.Finite) :
is, f i f '' s
theorem Set.Finite.lt_iInf_iff {α : Type u_1} {ι : Type u_2} [CompleteLinearOrder α] {s : Set ι} {f : ια} (h : s.Nonempty) (hs : s.Finite) {a : α} :
a < is, f i xs, a < f x