Documentation

TestingLowerBounds.FDiv.DPIJensen

Data processing inequality for f-divergences #

theorem ProbabilityTheory.fDiv_comp_le_compProd_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) :
ProbabilityTheory.fDiv f (μ.bind κ) (ν.bind κ) ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd κ)

The Data Processing Inequality for the f-divergence.

theorem ProbabilityTheory.fDiv_comp_le_of_comp_le_of_ac {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure ν] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsMarkovKernel κ] (h : ∀ (μ : MeasureTheory.Measure α), MeasureTheory.IsFiniteMeasure μμ.AbsolutelyContinuous νProbabilityTheory.fDiv f (μ.bind κ) (ν.bind κ) ProbabilityTheory.fDiv f μ ν) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] :
ProbabilityTheory.fDiv f (μ.bind κ) (ν.bind κ) ProbabilityTheory.fDiv f μ ν

To prove the DPI for an f-divergence, it suffices to prove it under an absolute continuity hypothesis.