Documentation

TestingLowerBounds.ForMathlib.RNDerivEqCondexp

Radon-Nikodym derivative of the composition of a measure and a kernel #

theorem ProbabilityTheory.toReal_rnDeriv_comp_eq_condexp_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hκη : ∀ᵐ (x : α) ∂μ, (κ x).AbsolutelyContinuous (η x)) :
(fun (ab : α × β) => ((μ.bind κ).rnDeriv (ν.bind η) ab.2).toReal) =ᵐ[ν.compProd η] MeasureTheory.condexp (MeasurableSpace.comap Prod.snd ) (ν.compProd η) fun (ab : α × β) => ((μ.compProd κ).rnDeriv (ν.compProd η) ab).toReal
theorem ProbabilityTheory.toReal_rnDeriv_comp_eq_condexp_compProd_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] :
(fun (ab : α × β) => ((μ.bind κ).rnDeriv (ν.bind κ) ab.2).toReal) =ᵐ[ν.compProd κ] MeasureTheory.condexp (MeasurableSpace.comap Prod.snd ) (ν.compProd κ) fun (ab : α × β) => ((μ.compProd κ).rnDeriv (ν.compProd κ) ab).toReal
theorem ProbabilityTheory.toReal_rnDeriv_comp {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) [ProbabilityTheory.IsFiniteKernel κ] :
(fun (ab : α × β) => ((μ.bind κ).rnDeriv (ν.bind κ) ab.2).toReal) =ᵐ[ν.compProd κ] MeasureTheory.condexp (MeasurableSpace.comap Prod.snd ) (ν.compProd κ) fun (ab : α × β) => (μ.rnDeriv ν ab.1).toReal
theorem Measurable.setLIntegral_kernel_prod_right' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsSFiniteKernel κ] {f : α × βENNReal} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
Measurable fun (a : α) => ∫⁻ (b : β) in s, f (a, b)κ a