Documentation

TestingLowerBounds.Sorry.Jensen

Jensen's inequality for the conditional expectation #

theorem ConvexOn.apply_condexp_le {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {ν : MeasureTheory.Measure α} {f : } (hm : m ) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) {g : α} (hg : Measurable g) (hg_pos : 0 g) (h_int1 : MeasureTheory.Integrable g ν) (h_int2 : MeasureTheory.Integrable (fun (x : α) => f (g x)) ν) :
(fun (x : α) => f (MeasureTheory.condexp m ν g x)) ≤ᵐ[ν.trim hm] MeasureTheory.condexp m ν fun (x : α) => f (g x)

A specialized version of Jensen's inequality for the conditional expectation.

theorem ProbabilityTheory.f_condexp_rnDeriv_le {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hm : m ) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
(fun (x : α) => f (MeasureTheory.condexp m ν (fun (x : α) => (μ.rnDeriv ν x).toReal) x)) ≤ᵐ[ν.trim hm] MeasureTheory.condexp m ν fun (x : α) => f (μ.rnDeriv ν x).toReal