Documentation

TestingLowerBounds.FDiv.CompProd.CompProd

f-Divergences #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem ProbabilityTheory.fDiv_ae_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(∀ᵐ (a : α) ∂μ, ProbabilityTheory.fDiv f (κ a) (η a) ) (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) (derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))

Equivalence between two possible versions of the first condition for the finiteness of the conditional f divergence, the second version is the preferred one.

theorem ProbabilityTheory.integrable_fDiv_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (h_int : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) (h_ac : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.fDiv f (κ x) (η x)).toReal) μ MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ

Equivalence between two possible versions of the second condition for the finiteness of the conditional f divergence, the second version is the preferred one.

theorem ProbabilityTheory.fDiv_toReal_eq_ae {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {f : } {γ : Type u_3} [MeasurableSpace γ] {ξ : ProbabilityTheory.Kernel α β} {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsFiniteKernel κ] (hf_cvx : ConvexOn (Set.Ici 0) f) (h_ac : derivAtTop f = ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, (κ (a, b)).AbsolutelyContinuous (η (a, b))) (h_int : ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, MeasureTheory.Integrable (fun (x : γ) => f ((κ (a, b)).rnDeriv (η (a, b)) x).toReal) (η (a, b))) :
∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, (ProbabilityTheory.fDiv f (κ (a, b)) (η (a, b))).toReal = ∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b) + (derivAtTop f).toReal * (((κ (a, b)).singularPart (η (a, b))) Set.univ).toReal
theorem ProbabilityTheory.integral_f_rnDeriv_mul_le_integral {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) (hκη : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
∫ (x : α), f (μ.rnDeriv ν x * (κ x) Set.univ).toRealν ∫ (x : α × β), f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toRealν.compProd η
theorem ProbabilityTheory.integral_f_rnDeriv_mul_withDensity_le_integral {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) :
∫ (x : α), f (μ.rnDeriv ν x * ((η.withDensity (κ.rnDeriv η)) x) Set.univ).toRealν ∫ (x : α × β), f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toRealν.compProd η
theorem ProbabilityTheory.integral_f_rnDeriv_le_integral_add {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) (h_deriv : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
∫ (x : α), f (μ.rnDeriv ν x).toRealν ∫ (x : α × β), f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toRealν.compProd η + (derivAtTop f).toReal * ∫ (a : α), (μ.rnDeriv ν a).toReal * (((κ.singularPart η) a) Set.univ).toRealν

The Data Processing Inequality for the f-divergence.