Documentation

TestingLowerBounds.FDiv.Trim

f-Divergences on sub-sigma-algebras #

Main statements #

To prove the DPI for an f-divergence, for the map by a function, it suffices to prove it under an absolute continuity hypothesis.

theorem ProbabilityTheory.f_rnDeriv_map_le {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
(fun (x : α) => f ((MeasureTheory.Measure.map g μ).rnDeriv (MeasureTheory.Measure.map g ν) (g x)).toReal) ≤ᵐ[ν] MeasureTheory.condexp (MeasurableSpace.comap g ) ν fun (x : α) => f (μ.rnDeriv ν x).toReal
theorem ProbabilityTheory.integrable_f_rnDeriv_map {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
theorem ProbabilityTheory.fDiv_map_of_ac {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
ProbabilityTheory.fDiv f (MeasureTheory.Measure.map g μ) (MeasureTheory.Measure.map g ν) = (∫ (x : α), f (MeasureTheory.condexp (MeasurableSpace.comap g ) ν (fun (x : α) => (μ.rnDeriv ν x).toReal) x)ν)
theorem ProbabilityTheory.fDiv_trim_of_ac {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hm : m ) (hμν : μ.AbsolutelyContinuous ν) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
ProbabilityTheory.fDiv f (μ.trim hm) (ν.trim hm) = (∫ (x : α), f (MeasureTheory.condexp m ν (fun (x : α) => (μ.rnDeriv ν x).toReal) x)ν)
theorem ProbabilityTheory.f_rnDeriv_trim_le {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hm : m ) (hμν : μ.AbsolutelyContinuous ν) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
(fun (x : α) => f ((μ.trim hm).rnDeriv (ν.trim hm) x).toReal) ≤ᵐ[ν.trim hm] MeasureTheory.condexp m ν fun (x : α) => f (μ.rnDeriv ν x).toReal
theorem ProbabilityTheory.integrable_f_rnDeriv_trim {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hm : m ) (hμν : μ.AbsolutelyContinuous ν) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
MeasureTheory.Integrable (fun (x : α) => f ((μ.trim hm).rnDeriv (ν.trim hm) x).toReal) (ν.trim hm)
theorem ProbabilityTheory.integrable_f_condexp_rnDeriv {α : Type u_1} {m : MeasurableSpace α} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hm : m ) (hμν : μ.AbsolutelyContinuous ν) (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν) :
MeasureTheory.Integrable (fun (x : α) => f (MeasureTheory.condexp m ν (fun (x : α) => (μ.rnDeriv ν x).toReal) x)) ν

Data processing inequality for f-divergences and measurable functions.

Data processing inequality for f-divergences and sub-sigma-algebras.

theorem ProbabilityTheory.fDiv_trim_comap_rnDeriv_of_ac {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hμν : μ.AbsolutelyContinuous ν) (hf : MeasureTheory.StronglyMeasurable f) :
ProbabilityTheory.fDiv f (μ.trim ) (ν.trim ) = ProbabilityTheory.fDiv f μ ν

The f-divergence of two measures restricted to the sigma-algebras generated by their Radon-Nikodym derivative is the f-divergence of the unrestricted measures. The restriction to that sigma-algebra is useful because it is countably generated.