Documentation

TestingLowerBounds.Divergences.StatInfo.StatInfo

Statistical information #

Main definitions #

Main statements #

Notation #

Implementation details #

noncomputable def ProbabilityTheory.statInfo {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (π : MeasureTheory.Measure Bool) :

The statistical information of the measures μ and ν with respect to the prior π ∈ ℳ({0,1}).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.statInfo_eq_min_sub {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (π : MeasureTheory.Measure Bool) :
    ProbabilityTheory.statInfo μ ν π = min (π {false} * μ Set.univ) (π {true} * ν Set.univ) - ProbabilityTheory.bayesBinaryRisk μ ν π
    theorem ProbabilityTheory.statInfo_le_min {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {π : MeasureTheory.Measure Bool} :
    ProbabilityTheory.statInfo μ ν π min (π {false} * μ Set.univ) (π {true} * ν Set.univ)
    theorem ProbabilityTheory.statInfo_comp_le {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (π : MeasureTheory.Measure Bool) (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel η] :
    ProbabilityTheory.statInfo (μ.bind η) (ν.bind η) π ProbabilityTheory.statInfo μ ν π

    Data processing inequality for the statistical information.

    theorem ProbabilityTheory.statInfo_eq_min_sub_lintegral {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] :
    ProbabilityTheory.statInfo μ ν π = min (π {false} * μ Set.univ) (π {true} * ν Set.univ) - ∫⁻ (x : 𝒳), min (π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x) (π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x)π.bind (ProbabilityTheory.twoHypKernel μ ν)
    theorem ProbabilityTheory.statInfo_eq_min_sub_lintegral' {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {ζ : MeasureTheory.Measure 𝒳} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.SigmaFinite ζ] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] (hμζ : μ.AbsolutelyContinuous ζ) (hνζ : ν.AbsolutelyContinuous ζ) :
    ProbabilityTheory.statInfo μ ν π = min (π {false} * μ Set.univ) (π {true} * ν Set.univ) - ∫⁻ (x : 𝒳), min (π {false} * μ.rnDeriv ζ x) (π {true} * ν.rnDeriv ζ x)ζ
    theorem ProbabilityTheory.toReal_statInfo_eq_min_sub_integral {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] :
    (ProbabilityTheory.statInfo μ ν π).toReal = min (π {false} * μ Set.univ).toReal (π {true} * ν Set.univ).toReal - ∫ (x : 𝒳), min (π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x).toReal (π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x).toRealπ.bind (ProbabilityTheory.twoHypKernel μ ν)
    theorem ProbabilityTheory.toReal_statInfo_eq_min_sub_integral' {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {ζ : MeasureTheory.Measure 𝒳} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.SigmaFinite ζ] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] (hμζ : μ.AbsolutelyContinuous ζ) (hνζ : ν.AbsolutelyContinuous ζ) :
    (ProbabilityTheory.statInfo μ ν π).toReal = min (π {false} * μ Set.univ).toReal (π {true} * ν Set.univ).toReal - ∫ (x : 𝒳), min (π {false} * μ.rnDeriv ζ x).toReal (π {true} * ν.rnDeriv ζ x).toRealζ
    theorem ProbabilityTheory.statInfo_eq_abs_add_lintegral_abs {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] :
    (ProbabilityTheory.statInfo μ ν π) = 2⁻¹ * ((∫⁻ (x : 𝒳), (π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x).toReal - (π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x).toReal‖₊π.bind (ProbabilityTheory.twoHypKernel μ ν)) - |(π {false} * μ Set.univ).toReal - (π {true} * ν Set.univ).toReal|)
    theorem ProbabilityTheory.toReal_statInfo_eq_integral_max_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {π : MeasureTheory.Measure Bool} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.IsFiniteMeasure π] (h : π {false} * μ Set.univ π {true} * ν Set.univ) :
    (ProbabilityTheory.statInfo μ ν π).toReal = ∫ (x : 𝒳), max 0 ((π {false} * μ.rnDeriv ν x).toReal - (π {true}).toReal)ν + (π {false} * (μ.singularPart ν) Set.univ).toReal
    theorem ProbabilityTheory.toReal_statInfo_eq_integral_max_of_ge {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {π : MeasureTheory.Measure Bool} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [MeasureTheory.IsFiniteMeasure π] (h : π {true} * ν Set.univ π {false} * μ Set.univ) :
    (ProbabilityTheory.statInfo μ ν π).toReal = ∫ (x : 𝒳), max 0 ((π {true}).toReal - (π {false} * μ.rnDeriv ν x).toReal)ν
    theorem ProbabilityTheory.statInfo_eq_lintegral_max_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] (h : π {false} * μ Set.univ π {true} * ν Set.univ) :
    ProbabilityTheory.statInfo μ ν π = ∫⁻ (x : 𝒳), max 0 (π {false} * μ.rnDeriv ν x - π {true})ν + π {false} * (μ.singularPart ν) Set.univ
    theorem ProbabilityTheory.statInfo_eq_lintegral_max_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] (h : π {true} * ν Set.univ < π {false} * μ Set.univ) :
    ProbabilityTheory.statInfo μ ν π = ∫⁻ (x : 𝒳), max 0 (π {true} - π {false} * μ.rnDeriv ν x)ν
    theorem ProbabilityTheory.toReal_statInfo_eq_integral_abs {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] {π : MeasureTheory.Measure Bool} [MeasureTheory.IsFiniteMeasure π] :
    (ProbabilityTheory.statInfo μ ν π).toReal = 2⁻¹ * (-|(π {false} * μ Set.univ).toReal - (π {true} * ν Set.univ).toReal| + ∫ (x : 𝒳), |(π {false} * μ.rnDeriv ν x).toReal - (π {true}).toReal|ν + (π {false} * (μ.singularPart ν) Set.univ).toReal)