Statistical information #
Main definitions #
Main statements #
statInfo_comp_le
: data-processing inequality
Notation #
Implementation details #
noncomputable def
ProbabilityTheory.statInfo
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(π : MeasureTheory.Measure Bool)
:
The statistical information of the measures μ
and ν
with respect to
the prior π ∈ ℳ({0,1})
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.statInfo_eq_min_sub
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(π : MeasureTheory.Measure Bool)
:
ProbabilityTheory.statInfo μ ν π = min (π {false} * μ Set.univ) (π {true} * ν Set.univ) - ProbabilityTheory.bayesBinaryRisk μ ν π
theorem
ProbabilityTheory.statInfo_eq_bayesRiskIncrease
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(π : MeasureTheory.Measure Bool)
:
@[simp]
theorem
ProbabilityTheory.statInfo_zero_left
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
:
ProbabilityTheory.statInfo 0 ν π = 0
@[simp]
theorem
ProbabilityTheory.statInfo_zero_right
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
:
ProbabilityTheory.statInfo μ 0 π = 0
@[simp]
theorem
ProbabilityTheory.statInfo_zero_prior
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
:
ProbabilityTheory.statInfo μ ν 0 = 0
@[simp]
theorem
ProbabilityTheory.statInfo_self
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
:
ProbabilityTheory.statInfo μ μ π = 0
theorem
ProbabilityTheory.statInfo_le_min
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
:
theorem
ProbabilityTheory.statInfo_ne_top
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure π]
:
ProbabilityTheory.statInfo μ ν π ≠ ⊤
theorem
ProbabilityTheory.statInfo_symm
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
:
theorem
ProbabilityTheory.statInfo_of_measure_true_eq_zero
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{π : MeasureTheory.Measure Bool}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(hπ : π {true} = 0)
:
ProbabilityTheory.statInfo μ ν π = 0
theorem
ProbabilityTheory.statInfo_of_measure_false_eq_zero
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{π : MeasureTheory.Measure Bool}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(hπ : π {false} = 0)
:
ProbabilityTheory.statInfo μ ν π = 0
theorem
ProbabilityTheory.statInfo_comp_le
{𝒳 : Type u_1}
{𝒳' : Type u_2}
{m𝒳 : MeasurableSpace 𝒳}
{m𝒳' : MeasurableSpace 𝒳'}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
(π : MeasureTheory.Measure Bool)
(η : ProbabilityTheory.Kernel 𝒳 𝒳')
[ProbabilityTheory.IsMarkovKernel η]
:
ProbabilityTheory.statInfo (μ.bind ⇑η) (ν.bind ⇑η) π ≤ ProbabilityTheory.statInfo μ ν π
Data processing inequality for the statistical information.
theorem
ProbabilityTheory.toReal_statInfo_eq_toReal_sub
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure π]
:
(ProbabilityTheory.statInfo μ ν π).toReal = (min (π {false} * μ Set.univ) (π {true} * ν Set.univ)).toReal - (ProbabilityTheory.bayesBinaryRisk μ ν π).toReal
theorem
ProbabilityTheory.statInfo_boolMeasure_le_statInfo
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
{E : Set 𝒳}
(hE : MeasurableSet E)
:
ProbabilityTheory.statInfo (Bool.boolMeasure (μ Eᶜ) (μ E)) (Bool.boolMeasure (ν Eᶜ) (ν E)) π ≤ ProbabilityTheory.statInfo μ ν π
theorem
ProbabilityTheory.statInfo_eq_min_sub_lintegral
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
:
ProbabilityTheory.statInfo μ ν π = min (π {false} * μ Set.univ) (π {true} * ν Set.univ) - ∫⁻ (x : 𝒳),
min (π {false} * μ.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)) x)
(π {true} * ν.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)) x) ∂π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)
theorem
ProbabilityTheory.statInfo_eq_min_sub_lintegral'
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{ζ : MeasureTheory.Measure 𝒳}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.SigmaFinite ζ]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
(hμζ : μ.AbsolutelyContinuous ζ)
(hνζ : ν.AbsolutelyContinuous ζ)
:
theorem
ProbabilityTheory.toReal_statInfo_eq_min_sub_integral
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
:
(ProbabilityTheory.statInfo μ ν π).toReal = min (π {false} * μ Set.univ).toReal (π {true} * ν Set.univ).toReal - ∫ (x : 𝒳),
min (π {false} * μ.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)) x).toReal
(π {true} * ν.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν))
x).toReal ∂π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)
theorem
ProbabilityTheory.toReal_statInfo_eq_min_sub_integral'
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{ζ : MeasureTheory.Measure 𝒳}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.SigmaFinite ζ]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
(hμζ : μ.AbsolutelyContinuous ζ)
(hνζ : ν.AbsolutelyContinuous ζ)
:
theorem
ProbabilityTheory.statInfo_eq_abs_add_lintegral_abs
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
:
↑(ProbabilityTheory.statInfo μ ν π) = 2⁻¹ * (↑(∫⁻ (x : 𝒳),
↑‖(π {false} * μ.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)) x).toReal - (π {true} * ν.rnDeriv (π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν))
x).toReal‖₊ ∂π.bind ⇑(ProbabilityTheory.twoHypKernel μ ν)) - ↑|(π {false} * μ Set.univ).toReal - (π {true} * ν Set.univ).toReal|)
theorem
ProbabilityTheory.toReal_statInfo_eq_integral_max_of_le
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure π]
(h : π {false} * μ Set.univ ≤ π {true} * ν Set.univ)
:
theorem
ProbabilityTheory.toReal_statInfo_eq_integral_max_of_ge
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
{μ : MeasureTheory.Measure 𝒳}
{ν : MeasureTheory.Measure 𝒳}
{π : MeasureTheory.Measure Bool}
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[MeasureTheory.IsFiniteMeasure π]
(h : π {true} * ν Set.univ ≤ π {false} * μ Set.univ)
:
theorem
ProbabilityTheory.statInfo_eq_lintegral_max_of_le
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
(h : π {false} * μ Set.univ ≤ π {true} * ν Set.univ)
:
theorem
ProbabilityTheory.statInfo_eq_lintegral_max_of_gt
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
(h : π {true} * ν Set.univ < π {false} * μ Set.univ)
:
theorem
ProbabilityTheory.toReal_statInfo_eq_integral_abs
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
{π : MeasureTheory.Measure Bool}
[MeasureTheory.IsFiniteMeasure π]
:
theorem
ProbabilityTheory.statInfo_eq_min_sub_iInf_measurableSet
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(π : MeasureTheory.Measure Bool)
[MeasureTheory.IsFiniteMeasure π]
:
theorem
ProbabilityTheory.integrable_statInfoFun_rnDeriv
{𝒳 : Type u_1}
{m𝒳 : MeasurableSpace 𝒳}
(β : ℝ)
(γ : ℝ)
(μ : MeasureTheory.Measure 𝒳)
(ν : MeasureTheory.Measure 𝒳)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
:
MeasureTheory.Integrable (fun (x : 𝒳) => ProbabilityTheory.statInfoFun β γ (μ.rnDeriv ν x).toReal) ν