Documentation

TestingLowerBounds.Testing.Risk

Estimation and risk #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem ProbabilityTheory.estimationProblem.ext {Θ : Type u_8} {𝒴 : Type u_9} {𝒵 : Type u_10} :
∀ {inst : MeasurableSpace Θ} {inst_1 : MeasurableSpace 𝒴} {inst_2 : MeasurableSpace 𝒵} {x y : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵}, x.y = y.yx.ℓ = y.ℓx = y
theorem ProbabilityTheory.estimationProblem.ext_iff {Θ : Type u_8} {𝒴 : Type u_9} {𝒵 : Type u_10} :
∀ {inst : MeasurableSpace Θ} {inst_1 : MeasurableSpace 𝒴} {inst_2 : MeasurableSpace 𝒵} {x y : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵}, x = y x.y = y.y x.ℓ = y.ℓ
structure ProbabilityTheory.estimationProblem (Θ : Type u_8) (𝒴 : Type u_9) (𝒵 : Type u_10) [MeasurableSpace Θ] [MeasurableSpace 𝒴] [MeasurableSpace 𝒵] :
Type (max (max u_10 u_8) u_9)

An estimation problem: a kernel P from a parameter space Θ to a sample space 𝒳, an objective function y on the parameter space and a cost function . We don't put the data generating kernel into this structure, since we will often perform operations on it and we don't want to duplicate all kernel operations on estimationProblem.

  • y : Θ𝒴

    The objective function.

  • y_meas : Measurable self.y
  • ℓ : 𝒴 × 𝒵ENNReal

    The cost (or loss) function.

  • ℓ_meas : Measurable self.ℓ
Instances For
    theorem ProbabilityTheory.estimationProblem.y_meas {Θ : Type u_8} {𝒴 : Type u_9} {𝒵 : Type u_10} [MeasurableSpace Θ] [MeasurableSpace 𝒴] [MeasurableSpace 𝒵] (self : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) :
    Measurable self.y
    theorem ProbabilityTheory.estimationProblem.ℓ_meas {Θ : Type u_8} {𝒴 : Type u_9} {𝒵 : Type u_10} [MeasurableSpace Θ] [MeasurableSpace 𝒴] [MeasurableSpace 𝒵] (self : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) :
    Measurable self.ℓ
    @[simp]
    theorem ProbabilityTheory.estimationProblem.comap_ℓ {Θ : Type u_1} {Θ' : Type u_2} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {mΘ' : MeasurableSpace Θ'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (f : Θ'Θ) (hf : Measurable f) :
    ∀ (a : 𝒴 × 𝒵), (E.comap f hf).ℓ a = E.ℓ a
    @[simp]
    theorem ProbabilityTheory.estimationProblem.comap_y {Θ : Type u_1} {Θ' : Type u_2} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {mΘ' : MeasurableSpace Θ'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (f : Θ'Θ) (hf : Measurable f) :
    ∀ (a : Θ'), (E.comap f hf).y a = (E.y f) a
    noncomputable def ProbabilityTheory.estimationProblem.comap {Θ : Type u_1} {Θ' : Type u_2} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {mΘ' : MeasurableSpace Θ'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (f : Θ'Θ) (hf : Measurable f) :

    Given an estimation problem E and a measurable function f : Θ' → Θ, we can consider a new estimation problem where the kernel is given by the pullback of E.P through f.

    Equations
    • E.comap f hf = { y := E.y f, y_meas := , := E.ℓ, ℓ_meas := }
    Instances For
      noncomputable def ProbabilityTheory.risk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (θ : Θ) :

      The risk of an estimator κ on an estimation problem E with data generating kernel P at the parameter θ.

      Equations
      Instances For
        noncomputable def ProbabilityTheory.bayesianRisk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) :

        The bayesian risk of an estimator κ on an estimation problem E with data generating kernel P with respect to a prior π.

        Equations
        Instances For
          @[simp]
          theorem ProbabilityTheory.bayesianRisk_of_isEmpty {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} {P : ProbabilityTheory.Kernel Θ 𝒳} {κ : ProbabilityTheory.Kernel 𝒳 𝒵} {π : MeasureTheory.Measure Θ} {E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵} [IsEmpty Θ] :
          theorem ProbabilityTheory.bayesianRisk_le_iSup_risk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) [MeasureTheory.IsProbabilityMeasure π] :
          ProbabilityTheory.bayesianRisk E P κ π ⨆ (θ : Θ), ProbabilityTheory.risk E P κ θ
          theorem ProbabilityTheory.bayesianRisk_comap_measurableEquiv {Θ : Type u_1} {Θ' : Type u_2} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {mΘ' : MeasurableSpace Θ'} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsSFiniteKernel P] (κ : ProbabilityTheory.Kernel 𝒳 𝒵) [ProbabilityTheory.IsSFiniteKernel κ] (π : MeasureTheory.Measure Θ) (e : Θ ≃ᵐ Θ') :
          ProbabilityTheory.bayesianRisk (E.comap e.symm ) (P.comap e.symm ) κ (MeasureTheory.Measure.map (⇑e) π) = ProbabilityTheory.bayesianRisk E P κ π
          noncomputable def ProbabilityTheory.bayesRiskPrior {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) :

          The Bayes risk of an estimation problem E with respect to a prior π, defined as the infimum of the Bayesian risks of all estimators.

          Equations
          Instances For
            theorem ProbabilityTheory.bayesRiskPrior_le_bayesRiskPrior_comp {Θ : Type u_1} {𝒳 : Type u_3} {𝒳' : Type u_4} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel η] :

            Data processing inequality for the Bayes risk with respect to a prior.

            def ProbabilityTheory.IsBayesEstimator {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) :

            An estimator is a Bayes estimator for a prior π if it attains the Bayes risk for π.

            Equations
            Instances For
              noncomputable def ProbabilityTheory.bayesRisk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) :

              The Bayes risk of an estimation problem E, defined as the supremum over priors of the Bayes risk of E with respect to the prior.

              Equations
              Instances For
                noncomputable def ProbabilityTheory.minimaxRisk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) :

                The Bayes risk of an estimation problem E, defined as the infimum over estimators of the maximal risk of the estimator.

                Equations
                Instances For
                  theorem ProbabilityTheory.bayesRisk_le_minimaxRisk {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) :

                  Properties of the Bayes risk of a prior #

                  theorem ProbabilityTheory.bayesRiskPrior_compProd_le_bayesRiskPrior {Θ : Type u_1} {𝒳 : Type u_3} {𝒳' : Type u_4} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsSFiniteKernel P] (π : MeasureTheory.Measure Θ) (κ : ProbabilityTheory.Kernel (Θ × 𝒳) 𝒳') [ProbabilityTheory.IsMarkovKernel κ] :
                  theorem ProbabilityTheory.bayesRiskPrior_le_inf {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) [ProbabilityTheory.IsMarkovKernel P] :
                  ProbabilityTheory.bayesRiskPrior E P π ⨅ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)π
                  theorem ProbabilityTheory.bayesianRisk_eq_lintegral_bayesInv_prod {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] [ProbabilityTheory.IsSFiniteKernel κ] :
                  ProbabilityTheory.bayesianRisk E P κ π = ∫⁻ (θz : Θ × 𝒵), E.ℓ (E.y θz.1, θz.2)(π.bind P).bind ((ProbabilityTheory.bayesInv P π).prod κ)

                  The Bayesian risk of an estimator κ with respect to a prior π can be expressed as an integral in the following way: R_π(κ) = ((P†π × κ) ∘ P ∘ π)[(θ, z) ↦ ℓ(y(θ), z)].

                  theorem ProbabilityTheory.bayesianRisk_eq_integral_integral_integral {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] [ProbabilityTheory.IsSFiniteKernel κ] :
                  ProbabilityTheory.bayesianRisk E P κ π = ∫⁻ (x : 𝒳), ∫⁻ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)(ProbabilityTheory.bayesInv P π) xκ xπ.bind P
                  theorem ProbabilityTheory.bayesianRisk_ge_lintegral_iInf_bayesInv {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (κ : ProbabilityTheory.Kernel 𝒳 𝒵) (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] [ProbabilityTheory.IsMarkovKernel κ] :
                  ProbabilityTheory.bayesianRisk E P κ π ∫⁻ (x : 𝒳), ⨅ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)(ProbabilityTheory.bayesInv P π) xπ.bind P

                  Generalized Bayes estimator #

                  structure ProbabilityTheory.IsGenBayesEstimator {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (f : 𝒳𝒵) (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] :

                  We say that a measurable function f : 𝒳 → 𝒵 is a Generalized Bayes estimator for the estimation problem E with respect to the prior π if for (P ∘ₘ π)-almost every x it is of the form x ↦ argmin_z P†π(x)[θ ↦ ℓ(y(θ), z)].

                  Instances For
                    theorem ProbabilityTheory.IsGenBayesEstimator.measurable {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] {E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵} {P : ProbabilityTheory.Kernel Θ 𝒳} [ProbabilityTheory.IsFiniteKernel P] {f : 𝒳𝒵} {π : MeasureTheory.Measure Θ} [MeasureTheory.IsFiniteMeasure π] (self : ProbabilityTheory.IsGenBayesEstimator E P f π) :
                    theorem ProbabilityTheory.IsGenBayesEstimator.property {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] {E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵} {P : ProbabilityTheory.Kernel Θ 𝒳} [ProbabilityTheory.IsFiniteKernel P] {f : 𝒳𝒵} {π : MeasureTheory.Measure Θ} [MeasureTheory.IsFiniteMeasure π] (self : ProbabilityTheory.IsGenBayesEstimator E P f π) :
                    ∀ᵐ (x : 𝒳) ∂π.bind P, ∫⁻ (θ : Θ), E.ℓ (E.y θ, f x)(ProbabilityTheory.bayesInv P π) x = ⨅ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)(ProbabilityTheory.bayesInv P π) x
                    @[reducible, inline]
                    noncomputable abbrev ProbabilityTheory.IsGenBayesEstimator.Kernel {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} {P : ProbabilityTheory.Kernel Θ 𝒳} {π : MeasureTheory.Measure Θ} {E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] {f : 𝒳𝒵} [ProbabilityTheory.IsFiniteKernel P] [MeasureTheory.IsFiniteMeasure π] (h : ProbabilityTheory.IsGenBayesEstimator E P f π) :

                    Given a Generalized Bayes estimator f, we can define a deterministic kernel.

                    Equations
                    Instances For
                      theorem ProbabilityTheory.bayesianRisk_of_isGenBayesEstimator {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} {P : ProbabilityTheory.Kernel Θ 𝒳} {π : MeasureTheory.Measure Θ} {E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] {f : 𝒳𝒵} [ProbabilityTheory.IsFiniteKernel P] [MeasureTheory.IsFiniteMeasure π] (hf : ProbabilityTheory.IsGenBayesEstimator E P f π) :
                      ProbabilityTheory.bayesianRisk E P hf.Kernel π = ∫⁻ (x : 𝒳), ⨅ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)(ProbabilityTheory.bayesInv P π) xπ.bind P
                      class ProbabilityTheory.HasGenBayesEstimator {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] :
                      Type (max u_3 u_7)

                      The estimation problem E admits a Generalized Bayes estimator with respect to the prior π.

                      Instances
                        theorem ProbabilityTheory.bayesRiskPrior_eq_of_hasGenBayesEstimator {Θ : Type u_1} {𝒳 : Type u_3} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} [StandardBorelSpace Θ] [Nonempty Θ] (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) [ProbabilityTheory.IsFiniteKernel P] (π : MeasureTheory.Measure Θ) [MeasureTheory.IsFiniteMeasure π] [h : ProbabilityTheory.HasGenBayesEstimator E P π] :
                        ProbabilityTheory.bayesRiskPrior E P π = ∫⁻ (x : 𝒳), ⨅ (z : 𝒵), ∫⁻ (θ : Θ), E.ℓ (E.y θ, z)(ProbabilityTheory.bayesInv P π) xπ.bind P

                        Bayes risk increase #

                        noncomputable def ProbabilityTheory.bayesRiskIncrease {Θ : Type u_1} {𝒳 : Type u_3} {𝒳' : Type u_4} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) (η : ProbabilityTheory.Kernel 𝒳 𝒳') :

                        The Bayes risk increase of an estimation problem E with respect to a prior π and a kernel η gives us how much the composition with η increases the risk of E with respect to π.

                        Equations
                        Instances For
                          theorem ProbabilityTheory.bayesRiskIncrease_comp {Θ : Type u_1} {𝒳 : Type u_3} {𝒳' : Type u_4} {𝒳'' : Type u_5} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {m𝒳'' : MeasurableSpace 𝒳''} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) (κ : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] (η : ProbabilityTheory.Kernel 𝒳' 𝒳'') [ProbabilityTheory.IsMarkovKernel η] :
                          theorem ProbabilityTheory.le_bayesRiskIncrease_comp {Θ : Type u_1} {𝒳 : Type u_3} {𝒳' : Type u_4} {𝒳'' : Type u_5} {𝒴 : Type u_6} {𝒵 : Type u_7} {mΘ : MeasurableSpace Θ} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {m𝒳'' : MeasurableSpace 𝒳''} {m𝒴 : MeasurableSpace 𝒴} {m𝒵 : MeasurableSpace 𝒵} (E : ProbabilityTheory.estimationProblem Θ 𝒴 𝒵) (P : ProbabilityTheory.Kernel Θ 𝒳) (π : MeasureTheory.Measure Θ) (κ : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] (η : ProbabilityTheory.Kernel 𝒳' 𝒳'') [ProbabilityTheory.IsMarkovKernel η] :

                          Data processing inequality for the Bayes risk increase.