Documentation

TestingLowerBounds.Divergences.StatInfo.StatInfoFun

noncomputable def ProbabilityTheory.statInfoFun (β : ) (γ : ) (x : ) :

The hockey-stick function, it is related to the statistical information divergence.

Equations
Instances For
    @[simp]
    theorem ProbabilityTheory.statInfoFun_of_one {γ : } {x : } :
    ProbabilityTheory.statInfoFun 1 γ x = if γ 1 then max 0 (γ - x) else max 0 (x - γ)
    theorem ProbabilityTheory.const_mul_statInfoFun {β : } {γ : } {x : } {a : } (ha : 0 a) :
    theorem ProbabilityTheory.statInfoFun_of_le {β : } {γ : } {x : } (h : γ β) :
    ProbabilityTheory.statInfoFun β γ x = max 0 (γ - β * x)
    theorem ProbabilityTheory.statInfoFun_of_gt {β : } {γ : } {x : } (h : γ > β) :
    ProbabilityTheory.statInfoFun β γ x = max 0 (β * x - γ)
    theorem ProbabilityTheory.statInfoFun_of_pos_of_le_of_le {β : } {γ : } {x : } (hβ : 0 < β) (hγ : γ β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_pos_of_le_of_ge {β : } {γ : } {x : } (hβ : 0 < β) (hγ : γ β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_pos_of_gt_of_le {β : } {γ : } {x : } (hβ : 0 < β) (hγ : γ > β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_pos_of_gt_of_ge {β : } {γ : } {x : } (hβ : 0 < β) (hγ : γ > β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_neg_of_le_of_le {β : } {γ : } {x : } (hβ : β < 0) (hγ : γ β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_neg_of_le_of_ge {β : } {γ : } {x : } (hβ : β < 0) (hγ : γ β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_neg_of_gt_of_le {β : } {γ : } {x : } (hβ : β < 0) (hγ : γ > β) (hx : x γ / β) :
    theorem ProbabilityTheory.statInfoFun_of_neg_of_gt_of_ge {β : } {γ : } {x : } (hβ : β < 0) (hγ : γ > β) (hx : x γ / β) :
    theorem ProbabilityTheory.derivAtTop_statInfoFun_of_nonneg_of_le {β : } {γ : } (hβ : 0 β) (hγ : γ β) :
    theorem ProbabilityTheory.derivAtTop_statInfoFun_of_nonneg_of_gt {β : } {γ : } (hβ : 0 β) (hγ : γ > β) :
    (derivAtTop fun (x : ) => ProbabilityTheory.statInfoFun β γ x) = β
    theorem ProbabilityTheory.derivAtTop_statInfoFun_of_nonpos_of_le {β : } {γ : } (hβ : β 0) (hγ : γ β) :
    (derivAtTop fun (x : ) => ProbabilityTheory.statInfoFun β γ x) = -β
    theorem ProbabilityTheory.derivAtTop_statInfoFun_of_nonpos_of_gt {β : } {γ : } (hβ : β 0) (hγ : γ > β) :
    theorem ProbabilityTheory.derivAtTop_statInfoFun_eq {β : } {γ : } :
    (derivAtTop fun (x : ) => ProbabilityTheory.statInfoFun β γ x) = (if 0 β then if γ β then 0 else β else if γ β then -β else 0)
    theorem ProbabilityTheory.statInfoFun_of_nonneg_of_right_le_one {β : } {γ : } {x : } (hβ : 0 β) (hx : x 1) :
    ProbabilityTheory.statInfoFun β γ x = (Set.Ioc (β * x) β).indicator (fun (y : ) => y - β * x) γ
    theorem ProbabilityTheory.statInfoFun_of_nonneg_of_one_le_right {β : } {γ : } {x : } (hβ : 0 β) (hx : 1 x) :
    ProbabilityTheory.statInfoFun β γ x = (Set.Ioc β (β * x)).indicator (fun (y : ) => β * x - y) γ
    theorem ProbabilityTheory.statInfoFun_of_nonpos_of_right_le_one {β : } {γ : } {x : } (hβ : β 0) (hx : x 1) :
    ProbabilityTheory.statInfoFun β γ x = (Set.Ioc β (β * x)).indicator (fun (y : ) => β * x - y) γ
    theorem ProbabilityTheory.statInfoFun_of_nonpos_of_one_le_right {β : } {γ : } {x : } (hβ : β 0) (hx : 1 x) :
    ProbabilityTheory.statInfoFun β γ x = (Set.Ioc (β * x) β).indicator (fun (y : ) => y - β * x) γ
    theorem ProbabilityTheory.statInfoFun_of_one_of_one_le_right {γ : } {x : } (h : 1 x) :
    ProbabilityTheory.statInfoFun 1 γ x = (Set.Ioc 1 x).indicator (fun (y : ) => x - y) γ
    theorem ProbabilityTheory.statInfoFun_of_one_of_right_le_one {γ : } {x : } (h : x 1) :
    ProbabilityTheory.statInfoFun 1 γ x = (Set.Ioc x 1).indicator (fun (y : ) => y - x) γ
    theorem ProbabilityTheory.statInfoFun_le_of_nonneg_of_right_le_one {β : } {γ : } {x : } (hβ : 0 β) (hx : x 1) :
    ProbabilityTheory.statInfoFun β γ x (Set.Ioc (β * x) β).indicator (fun (x_1 : ) => β - β * x) γ
    theorem ProbabilityTheory.statInfoFun_le_of_nonneg_of_one_le_right {β : } {γ : } {x : } (hβ : 0 β) (hx : 1 x) :
    ProbabilityTheory.statInfoFun β γ x (Set.Ioc β (β * x)).indicator (fun (x_1 : ) => β * x - β) γ
    theorem ProbabilityTheory.statInfoFun_le_of_nonpos_of_right_le_one {β : } {γ : } {x : } (hβ : β 0) (hx : x 1) :
    ProbabilityTheory.statInfoFun β γ x (Set.Ioc β (β * x)).indicator (fun (x_1 : ) => β * x - β) γ
    theorem ProbabilityTheory.statInfoFun_le_of_nonpos_of_one_le_right {β : } {γ : } {x : } (hβ : β 0) (hx : 1 x) :
    ProbabilityTheory.statInfoFun β γ x (Set.Ioc (β * x) β).indicator (fun (x_1 : ) => β - β * x) γ