theorem
ProbabilityTheory.statInfoFun_nonneg
(β : ℝ)
(γ : ℝ)
(x : ℝ)
:
0 ≤ ProbabilityTheory.statInfoFun β γ x
@[simp]
theorem
ProbabilityTheory.statInfoFun_of_zero
{γ : ℝ}
{x : ℝ}
:
ProbabilityTheory.statInfoFun 0 γ x = 0
theorem
ProbabilityTheory.const_mul_statInfoFun
{β : ℝ}
{γ : ℝ}
{x : ℝ}
{a : ℝ}
(ha : 0 ≤ a)
:
a * ProbabilityTheory.statInfoFun β γ x = ProbabilityTheory.statInfoFun (a * β) (a * γ) x
theorem
ProbabilityTheory.measurable_statInfoFun2
{β : ℝ}
{x : ℝ}
:
Measurable fun (γ : ℝ) => ProbabilityTheory.statInfoFun β γ x
theorem
ProbabilityTheory.statInfoFun_of_one_of_le_one
{γ : ℝ}
{x : ℝ}
(h : γ ≤ 1)
:
ProbabilityTheory.statInfoFun 1 γ x = max 0 (γ - x)
theorem
ProbabilityTheory.statInfoFun_of_one_of_one_lt
{γ : ℝ}
{x : ℝ}
(h : 1 < γ)
:
ProbabilityTheory.statInfoFun 1 γ x = max 0 (x - γ)
theorem
ProbabilityTheory.statInfoFun_of_one_of_le_one_of_le
{γ : ℝ}
{x : ℝ}
(h : γ ≤ 1)
(hx : x ≤ γ)
:
ProbabilityTheory.statInfoFun 1 γ x = γ - x
theorem
ProbabilityTheory.statInfoFun_of_one_of_le_one_of_ge
{γ : ℝ}
{x : ℝ}
(h : γ ≤ 1)
(hx : x ≥ γ)
:
ProbabilityTheory.statInfoFun 1 γ x = 0
theorem
ProbabilityTheory.statInfoFun_of_one_of_one_lt_of_le
{γ : ℝ}
{x : ℝ}
(h : 1 < γ)
(hx : x ≤ γ)
:
ProbabilityTheory.statInfoFun 1 γ x = 0
theorem
ProbabilityTheory.statInfoFun_of_one_of_one_lt_of_ge
{γ : ℝ}
{x : ℝ}
(h : 1 < γ)
(hx : x ≥ γ)
:
ProbabilityTheory.statInfoFun 1 γ x = x - γ
theorem
ProbabilityTheory.convexOn_statInfoFun
(β : ℝ)
(γ : ℝ)
:
ConvexOn ℝ Set.univ fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x
theorem
ProbabilityTheory.derivAtTop_statInfoFun_of_nonneg_of_le
{β : ℝ}
{γ : ℝ}
(hβ : 0 ≤ β)
(hγ : γ ≤ β)
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) = 0
theorem
ProbabilityTheory.derivAtTop_statInfoFun_of_nonneg_of_gt
{β : ℝ}
{γ : ℝ}
(hβ : 0 ≤ β)
(hγ : γ > β)
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) = ↑β
theorem
ProbabilityTheory.derivAtTop_statInfoFun_of_nonpos_of_le
{β : ℝ}
{γ : ℝ}
(hβ : β ≤ 0)
(hγ : γ ≤ β)
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) = -↑β
theorem
ProbabilityTheory.derivAtTop_statInfoFun_of_nonpos_of_gt
{β : ℝ}
{γ : ℝ}
(hβ : β ≤ 0)
(hγ : γ > β)
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) = 0
theorem
ProbabilityTheory.derivAtTop_statInfoFun_eq
{β : ℝ}
{γ : ℝ}
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) = ↑(if 0 ≤ β then if γ ≤ β then 0 else β else if γ ≤ β then -β else 0)
theorem
ProbabilityTheory.derivAtTop_statInfoFun_ne_top
(β : ℝ)
(γ : ℝ)
:
(derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x) ≠ ⊤
theorem
ProbabilityTheory.derivAtTop_statInfoFun_nonneg
(β : ℝ)
(γ : ℝ)
:
0 ≤ derivAtTop fun (x : ℝ) => ProbabilityTheory.statInfoFun β γ x
theorem
ProbabilityTheory.statInfoFun_of_one_of_one_le_right
{γ : ℝ}
{x : ℝ}
(h : 1 ≤ x)
:
ProbabilityTheory.statInfoFun 1 γ x = (Set.Ioc 1 x).indicator (fun (y : ℝ) => x - y) γ
theorem
ProbabilityTheory.statInfoFun_of_one_of_right_le_one
{γ : ℝ}
{x : ℝ}
(h : x ≤ 1)
:
ProbabilityTheory.statInfoFun 1 γ x = (Set.Ioc x 1).indicator (fun (y : ℝ) => y - x) γ
theorem
ProbabilityTheory.lintegral_nnnorm_statInfoFun_le
{μ : MeasureTheory.Measure ℝ}
(β : ℝ)
(x : ℝ)
:
theorem
ProbabilityTheory.integrable_statInfoFun
{μ : MeasureTheory.Measure ℝ}
[MeasureTheory.IsLocallyFiniteMeasure μ]
(β : ℝ)
(x : ℝ)
:
MeasureTheory.Integrable (fun (γ : ℝ) => ProbabilityTheory.statInfoFun β γ x) μ