Documentation

TestingLowerBounds.Testing.TwoHypKernel

Kernel with two values #

The kernel that sends false to μ and true to ν.

Equations
Instances For
    @[simp]
    theorem ProbabilityTheory.twoHypKernel_apply {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} (b : Bool) :
    (ProbabilityTheory.twoHypKernel μ ν) b = bif b then ν else μ
    @[simp]
    theorem ProbabilityTheory.comp_twoHypKernel {𝒳 : Type u_2} {𝒴 : Type u_4} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} (κ : ProbabilityTheory.Kernel 𝒳 𝒴) :
    κ.comp (ProbabilityTheory.twoHypKernel μ ν) = ProbabilityTheory.twoHypKernel (μ.bind κ) (ν.bind κ)
    theorem ProbabilityTheory.absolutelyContinuous_measure_comp_twoHypKernel_left {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) {π : MeasureTheory.Measure Bool} (hπ : π {false} 0) :
    μ.AbsolutelyContinuous (π.bind (ProbabilityTheory.twoHypKernel μ ν))
    theorem ProbabilityTheory.absolutelyContinuous_measure_comp_twoHypKernel_right {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) {π : MeasureTheory.Measure Bool} (hπ : π {true} 0) :
    ν.AbsolutelyContinuous (π.bind (ProbabilityTheory.twoHypKernel μ ν))
    theorem ProbabilityTheory.sum_smul_rnDeriv_twoHypKernel' {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] :
    ∀ᵐ (x : 𝒳) ∂π.bind (ProbabilityTheory.twoHypKernel μ ν), π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x + π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x = 1

    The kernel from 𝒳 to Bool defined by x ↦ (π₀ * ∂μ/∂(twoHypKernel μ ν ∘ₘ π) x + π₁ * ∂ν/∂(twoHypKernel μ ν ∘ₘ π) x). It is the Bayesian inverse of twoHypKernel μ ν with respect to π (see bayesInv_twoHypKernel).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ProbabilityTheory.twoHypKernelInv_apply {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) (π : MeasureTheory.Measure Bool) (x : 𝒳) :
      (ProbabilityTheory.twoHypKernelInv μ ν π) x = if π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x + π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x = 1 then (π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x) MeasureTheory.Measure.dirac true + (π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x) MeasureTheory.Measure.dirac false else MeasureTheory.Measure.dirac true
      theorem ProbabilityTheory.twoHypKernelInv_apply' {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} (μ : MeasureTheory.Measure 𝒳) (ν : MeasureTheory.Measure 𝒳) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] (s : Set Bool) :
      ∀ᵐ (x : 𝒳) ∂π.bind (ProbabilityTheory.twoHypKernel μ ν), ((ProbabilityTheory.twoHypKernelInv μ ν π) x) s = π {true} * ν.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x * s.indicator 1 true + π {false} * μ.rnDeriv (π.bind (ProbabilityTheory.twoHypKernel μ ν)) x * s.indicator 1 false
      theorem ProbabilityTheory.measure_prod_ext {𝒳 : Type u_2} {𝒴 : Type u_4} {m𝒳 : MeasurableSpace 𝒳} {m𝒴 : MeasurableSpace 𝒴} {μ : MeasureTheory.Measure (𝒳 × 𝒴)} {ν : MeasureTheory.Measure (𝒳 × 𝒴)} [MeasureTheory.IsFiniteMeasure μ] (h : ∀ (A : Set 𝒳), MeasurableSet A∀ (B : Set 𝒴), MeasurableSet Bμ (A ×ˢ B) = ν (A ×ˢ B)) :
      μ = ν
      theorem ProbabilityTheory.bayesRiskPrior_eq_of_hasGenBayesEstimator_binary {𝒳 : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {𝒴 : Type u_6} {𝒵 : Type u_7} [MeasurableSpace 𝒴] [MeasurableSpace 𝒵] (E : ProbabilityTheory.estimationProblem Bool 𝒴 𝒵) (P : ProbabilityTheory.Kernel Bool 𝒳) [ProbabilityTheory.IsFiniteKernel P] (π : MeasureTheory.Measure Bool) [MeasureTheory.IsFiniteMeasure π] [h : ProbabilityTheory.HasGenBayesEstimator E P π] :
      ProbabilityTheory.bayesRiskPrior E P π = ∫⁻ (x : 𝒳), ⨅ (z : 𝒵), π {true} * (P true).rnDeriv (π.bind P) x * E.ℓ (E.y true, z) + π {false} * (P false).rnDeriv (π.bind P) x * E.ℓ (E.y false, z)π.bind P