Documentation

TestingLowerBounds.Kernel.Deterministic

Basic deterministic kernels #

noncomputable def ProbabilityTheory.Kernel.id {α : Type u_1} {mα : MeasurableSpace α} :

The identity kernel.

Equations
Instances For
    Equations
    • =
    theorem ProbabilityTheory.Kernel.id_apply {α : Type u_1} {mα : MeasurableSpace α} (a : α) :
    ProbabilityTheory.Kernel.id a = MeasureTheory.Measure.dirac a
    noncomputable def ProbabilityTheory.Kernel.copy (α : Type u_3) [MeasurableSpace α] :

    The deterministic kernel that maps x : α to the Dirac measure at (x, x) : α × α.

    Equations
    Instances For

      The Markov kernel to the Unit type.

      Equations
      Instances For
        noncomputable def ProbabilityTheory.Kernel.swap (α : Type u_3) (β : Type u_4) [MeasurableSpace α] [MeasurableSpace β] :

        The deterministic kernel that maps (x, y) to the Dirac measure at (y, x).

        Equations
        Instances For
          theorem ProbabilityTheory.Kernel.swap_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (ab : α × β) :
          theorem ProbabilityTheory.Kernel.swap_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (ab : α × β) {s : Set (β × α)} (hs : MeasurableSet s) :
          ((ProbabilityTheory.Kernel.swap α β) ab) s = s.indicator 1 ab.swap