Basic deterministic kernels #
The identity kernel.
Equations
- ProbabilityTheory.Kernel.id = ProbabilityTheory.Kernel.deterministic id ⋯
Instances For
instance
ProbabilityTheory.Kernel.instIsMarkovKernelId
{α : Type u_1}
{mα : MeasurableSpace α}
:
ProbabilityTheory.IsMarkovKernel ProbabilityTheory.Kernel.id
Equations
- ⋯ = ⋯
theorem
ProbabilityTheory.Kernel.id_apply
{α : Type u_1}
{mα : MeasurableSpace α}
(a : α)
:
ProbabilityTheory.Kernel.id a = MeasureTheory.Measure.dirac a
noncomputable def
ProbabilityTheory.Kernel.copy
(α : Type u_3)
[MeasurableSpace α]
:
ProbabilityTheory.Kernel α (α × α)
The deterministic kernel that maps x : α
to the Dirac measure at (x, x) : α × α
.
Equations
- ProbabilityTheory.Kernel.copy α = ProbabilityTheory.Kernel.deterministic (fun (x : α) => (x, x)) ⋯
Instances For
instance
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy
{α : Type u_1}
{mα : MeasurableSpace α}
:
Equations
- ⋯ = ⋯
theorem
ProbabilityTheory.Kernel.copy_apply
{α : Type u_1}
{mα : MeasurableSpace α}
(a : α)
:
(ProbabilityTheory.Kernel.copy α) a = MeasureTheory.Measure.dirac (a, a)
The Markov kernel to the Unit
type.
Equations
- ProbabilityTheory.Kernel.discard α = ProbabilityTheory.Kernel.deterministic (fun (x : α) => ()) ⋯
Instances For
instance
ProbabilityTheory.Kernel.instIsMarkovKernelUnitDiscard
{α : Type u_1}
{mα : MeasurableSpace α}
:
Equations
- ⋯ = ⋯
@[simp]
@[simp]
theorem
MeasureTheory.Measure.comp_discard
{α : Type u_1}
{mα : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
:
μ.bind ⇑(ProbabilityTheory.Kernel.discard α) = μ Set.univ • MeasureTheory.Measure.dirac ()
noncomputable def
ProbabilityTheory.Kernel.swap
(α : Type u_3)
(β : Type u_4)
[MeasurableSpace α]
[MeasurableSpace β]
:
ProbabilityTheory.Kernel (α × β) (β × α)
The deterministic kernel that maps (x, y)
to the Dirac measure at (y, x)
.
Equations
- ProbabilityTheory.Kernel.swap α β = ProbabilityTheory.Kernel.deterministic Prod.swap ⋯
Instances For
instance
ProbabilityTheory.Kernel.instIsMarkovKernelProdSwap
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
:
Equations
- ⋯ = ⋯
theorem
ProbabilityTheory.Kernel.swap_apply
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(ab : α × β)
:
(ProbabilityTheory.Kernel.swap α β) ab = MeasureTheory.Measure.dirac ab.swap
theorem
ProbabilityTheory.Kernel.swap_apply'
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(ab : α × β)
{s : Set (β × α)}
(hs : MeasurableSet s)
:
((ProbabilityTheory.Kernel.swap α β) ab) s = s.indicator 1 ab.swap