Documentation

BrownianMotion.StochasticIntegral.ClassD

Locally integrable, class D, class DL #

def ProbabilityTheory.HasLocallyIntegrableSup {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω := by volume_tac) :

A stochastic process has locally integrable supremum if it satisfies locally the property that for all t, the random variable ω ↦ sup_{s ≤ t} ‖X s ω‖ is integrable.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    structure ProbabilityTheory.ClassD {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} [Preorder ι] [Nonempty ι] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) :

    A stochastic process $(X_t)$ is of class D (or in the Doob-Meyer class) if it is adapted and the set $\{X_\tau \mid \tau \text{ is a finite stopping time}\}$ is uniformly integrable.

    Instances For
      structure ProbabilityTheory.ClassDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} [Preorder ι] [Nonempty ι] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) :

      A stochastic process $(X_t)$ is of class DL if it is adapted and for all $t$, the set $\{X_\tau \mid \tau \text{ is a stopping time with } \tau \le t\}$ is uniformly integrable.

      Instances For
        theorem ProbabilityTheory.ClassD.classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [Preorder ι] [Nonempty ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} (hX : ClassD X 𝓕 P) :
        ClassDL X 𝓕 P
        theorem MeasureTheory.Submartingale.classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} [NormedSpace E] [CompleteSpace E] [PartialOrder ι] [Nonempty ι] {𝓕 : Filtration ι } [TopologicalSpace ι] [PartialOrder E] [OrderClosedTopology E] [IsOrderedAddMonoid E] [IsOrderedModule E] (hX1 : Submartingale X 𝓕 P) (hX2 : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (hX3 : 0 X) :
        theorem MeasureTheory.Submartingale.classD_iff_uniformIntegrable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} [NormedSpace E] [CompleteSpace E] [PartialOrder ι] [Nonempty ι] {𝓕 : Filtration ι } [TopologicalSpace ι] [PartialOrder E] [OrderClosedTopology E] [IsOrderedAddMonoid E] [IsOrderedModule E] (hX1 : Submartingale X 𝓕 P) (hX2 : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (hX3 : 0 X) :
        theorem MeasureTheory.Martingale.classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} [NormedSpace E] [CompleteSpace E] [PartialOrder ι] [Nonempty ι] {𝓕 : Filtration ι } [TopologicalSpace ι] (hX1 : Martingale X 𝓕 P) (hX2 : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) :
        theorem MeasureTheory.Martingale.classD_iff_uniformIntegrable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} [NormedSpace E] [CompleteSpace E] [PartialOrder ι] [Nonempty ι] {𝓕 : Filtration ι } [TopologicalSpace ι] (hX1 : Martingale X 𝓕 P) (hX2 : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) :
        theorem ProbabilityTheory.isStable_hasLocallyIntegrableSup {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] :
        IsStable 𝓕 fun (x : ιΩE) => HasLocallyIntegrableSup x 𝓕 P
        theorem ProbabilityTheory.isStable_classD {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] :
        IsStable 𝓕 fun (x : ιΩE) => ClassD x 𝓕 P
        theorem ProbabilityTheory.isStable_classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] :
        IsStable 𝓕 fun (x : ιΩE) => ClassDL x 𝓕 P
        theorem MeasureTheory.Integrable.classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : Filtration ι } [Nonempty ι] (hX : ∀ (t : ι), Integrable (fun (ω : Ω) => ⨆ (s : ι), ⨆ (_ : s t), X t ω‖ₑ) P) :
        theorem ProbabilityTheory.HasLocallyIntegrableSup.locally_classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] (hX1 : HasLocallyIntegrableSup X 𝓕 P) (hX2 : MeasureTheory.Adapted 𝓕 X) (h𝓕 : 𝓕.IsRightContinuous) :
        Locally (fun (x : ιΩE) => ClassDL x 𝓕 P) 𝓕 X P
        theorem ProbabilityTheory.ClassDL.locally_classD {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] (hX : ClassDL X 𝓕 P) :
        Locally (fun (x : ιΩE) => ClassD x 𝓕 P) 𝓕 X P
        theorem ProbabilityTheory.locally_classD_of_locally_classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] (hX : Locally (fun (x : ιΩE) => ClassDL x 𝓕 P) 𝓕 X P) (h𝓕 : 𝓕.IsRightContinuous) :
        Locally (fun (x : ιΩE) => ClassD x 𝓕 P) 𝓕 X P
        theorem ProbabilityTheory.isLocalizingSequence_hittingAfter_Ici {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} [PartialOrder ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [InfSet ι] [Bot ι] [CompactIccSpace ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) {X : ιΩ} (hX1 : MeasureTheory.Adapted 𝓕 X) (hX2 : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (h𝓕 : 𝓕.IsRightContinuous) :
        theorem ProbabilityTheory.sup_stoppedProcess_hittingAfter_Ici_le {ι : Type u_1} {Ω : Type u_2} [LinearOrder ι] {E : Type u_4} [NormedAddCommGroup E] [InfSet ι] [Bot ι] {X : ιΩE} (t : ι) (K : ) (ω : Ω) :
        ⨆ (s : ι), ⨆ (_ : s t), MeasureTheory.stoppedProcess X (MeasureTheory.hittingAfter (fun (t : ι) (ω : Ω) => X t ω) (Set.Ici K) ) s ω K + {ω : Ω | MeasureTheory.hittingAfter (fun (t : ι) (ω : Ω) => X t ω) (Set.Ici K) ω t}.indicator (fun (ω : Ω) => MeasureTheory.stoppedValue X (MeasureTheory.hittingAfter (fun (t : ι) (ω : Ω) => X t ω) (Set.Ici K) ) ω) ω
        theorem ProbabilityTheory.ClassDL.hasLocallyIntegrableSup {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [InfSet ι] [CompactIccSpace ι] [OrderBot ι] (hX1 : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) (hX2 : ClassDL X 𝓕 P) (h𝓕 : 𝓕.IsRightContinuous) :
        theorem ProbabilityTheory.hasLocallyIntegrableSup_of_locally_classDL {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [InfSet ι] [CompactIccSpace ι] [OrderBot ι] (hX1 : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) (hX2 : Locally (fun (x : ιΩE) => ClassDL x 𝓕 P) 𝓕 X P) (h𝓕 : 𝓕.IsRightContinuous) :