Documentation

BrownianMotion.Auxiliary.Martingale

Properties of martingales and submartingales #

theorem MeasureTheory.Martingale.congr {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [Preorder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} {X Y : ιΩE} {𝓕 : Filtration ι } (hX : Martingale X 𝓕 P) (hY : Adapted 𝓕 Y) (h_eq : ∀ (t : ι), X t =ᶠ[ae P] Y t) :
Martingale Y 𝓕 P
theorem MeasureTheory.Submartingale.congr {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [Preorder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} {X Y : ιΩE} {𝓕 : Filtration ι } [LE E] (hX : Submartingale X 𝓕 P) (hY : Adapted 𝓕 Y) (h_eq : ∀ (t : ι), X t =ᶠ[ae P] Y t) :
Submartingale Y 𝓕 P
theorem MeasureTheory.Martingale.submartingale_convex_comp {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} [SigmaFinite P] {X : ιΩE} {𝓕 : Filtration ι } (hX : Martingale X 𝓕 P) {φ : E} (hφ_cvx : ConvexOn Set.univ φ) (hφ_cont : Continuous φ) (hφ_int : ∀ (t : ι), Integrable (fun (ω : Ω) => φ (X t ω)) P) :
Submartingale (fun (t : ι) (ω : Ω) => φ (X t ω)) 𝓕 P
theorem MeasureTheory.Martingale.submartingale_norm {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} [SigmaFinite P] {X : ιΩE} {𝓕 : Filtration ι } (hX : Martingale X 𝓕 P) :
Submartingale (fun (t : ι) (ω : Ω) => X t ω) 𝓕 P
theorem MeasureTheory.Submartingale.monotone_convex_comp {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} [SigmaFinite P] {X : ιΩE} {𝓕 : Filtration ι } [Preorder E] (hX : Submartingale X 𝓕 P) {φ : E} (hφ_mono : Monotone φ) (hφ_cvx : ConvexOn Set.univ φ) (hφ_cont : Continuous φ) (hφ_int : ∀ (t : ι), Integrable (fun (ω : Ω) => φ (X t ω)) P) :
Submartingale (fun (t : ι) (ω : Ω) => φ (X t ω)) 𝓕 P