Documentation

BrownianMotion.StochasticIntegral.ApproxSeq

Discrete approximation of a stopping time #

structure MeasureTheory.DiscreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} (𝓕 : Filtration ι ) (τ : ΩWithTop ι) (μ : Measure Ω := by volume_tac) :
Type (max u_1 u_2)

Given a random time τ, a discrete approximation sequence τn of τ is a sequence of stopping times with countable range that converges to τ from above almost surely.

Instances For
    theorem MeasureTheory.DiscreteApproxSequence.ext {ι : Type u_1} {Ω : Type u_2} {inst✝ : TopologicalSpace ι} {inst✝¹ : LinearOrder ι} {inst✝² : OrderTopology ι} { : MeasurableSpace Ω} {𝓕 : Filtration ι } {τ : ΩWithTop ι} {μ : autoParam (Measure Ω) _auto✝} {x y : DiscreteApproxSequence 𝓕 τ μ} (seq : x.seq = y.seq) :
    x = y
    theorem MeasureTheory.DiscreteApproxSequence.ext_iff {ι : Type u_1} {Ω : Type u_2} {inst✝ : TopologicalSpace ι} {inst✝¹ : LinearOrder ι} {inst✝² : OrderTopology ι} { : MeasurableSpace Ω} {𝓕 : Filtration ι } {τ : ΩWithTop ι} {μ : autoParam (Measure Ω) _auto✝} {x y : DiscreteApproxSequence 𝓕 τ μ} :
    x = y x.seq = y.seq
    instance MeasureTheory.instFunLikeDiscreteApproxSequenceNatForallWithTop {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} :
    FunLike (DiscreteApproxSequence 𝓕 τ μ) (ΩWithTop ι)
    Equations
    theorem MeasureTheory.isStoppingTime_const' {Ω : Type u_2} { : MeasurableSpace Ω} {ι : Type u_4} [Preorder ι] (f : Filtration ι ) (i : WithTop ι) :
    IsStoppingTime f fun (x : Ω) => i
    class MeasureTheory.Approximable {ι : Type u_4} {Ω : Type u_5} { : MeasurableSpace Ω} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] (𝓕 : Filtration ι ) (μ : Measure Ω := by volume_tac) :
    Type (max u_4 u_5)

    A time index ι is said to be approximable if for any stopping time τ on ι, there exists a discrete approximation sequence of τ.

    Instances
      def MeasureTheory.IsStoppingTime.discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {τ : ΩWithTop ι} (h : IsStoppingTime 𝓕 τ) (μ : Measure Ω) [Approximable 𝓕 μ] :

      Given a stopping time τ on an approximable time index, we obtain an associated discrete approximation sequence.

      Equations
      Instances For
        def MeasureTheory.discreteApproxSequence_const {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {μ : Measure Ω} (𝓕 : Filtration ι ) (i : WithTop ι) :

        The constant discrete approximation sequence.

        Equations
        Instances For
          theorem MeasureTheory.tendsto_stoppedValue_discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} [Nonempty ι] (τn : DiscreteApproxSequence 𝓕 τ μ) (hX : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) :
          ∀ᵐ (ω : Ω) μ, Filter.Tendsto (fun (n : ) => stoppedValue X (τn.seq n) ω) Filter.atTop (nhds (stoppedValue X τ ω))
          def MeasureTheory.discreteApproxSequence_of {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {μ : Measure Ω} {τ : ΩWithTop ι} {i : ι} (𝓕 : Filtration ι ) ( : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) :

          For τ a time bounded by i and τn a discrete approximation sequence of τ, discreteApproxSequence_of is the discrete approximation sequence of τ defined by τn ∧ i.

          Equations
          Instances For
            theorem MeasureTheory.discreteApproxSequence_of_le {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} {i : ι} ( : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) (m : ) (ω : Ω) :
            (discreteApproxSequence_of 𝓕 τn) m ω i
            def MeasureTheory.DiscreteApproxSequence.inf {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ σ : ΩWithTop ι} (τn : DiscreteApproxSequence 𝓕 τ μ) (σn : DiscreteApproxSequence 𝓕 σ μ) :
            DiscreteApproxSequence 𝓕 (τσ) μ

            The minimum of two discrete approximation sequences is a discrete approximation sequence of the minimum of the two stopping times.

            Equations
            • τn.inf σn = { seq := fun (m : ) => τn mσn m, isStoppingTime := , countable := , antitone := , le := , tendsto := }
            Instances For
              def MeasureTheory.DiscreteApproxSequence.inf' {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} (τn τn' : DiscreteApproxSequence 𝓕 τ μ) :

              The minimum of two discrete approximation sequence of the same stopping time.

              Equations
              • τn.inf' τn' = { seq := fun (m : ) => τn mτn' m, isStoppingTime := , countable := , antitone := , le := , tendsto := }
              Instances For
                @[simp]
                theorem MeasureTheory.DiscreteApproxSequence.inf'_eq {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} (τn τn' : DiscreteApproxSequence 𝓕 τ μ) (n : ) :
                (τn.inf' τn') n = τn nτn' n
                @[simp]
                theorem MeasureTheory.DiscreteApproxSequence.inf'_apply {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} (τn τn' : DiscreteApproxSequence 𝓕 τ μ) (n : ) (ω : Ω) :
                (τn.inf' τn') n ω = min (τn n ω) (τn' n ω)
                instance MeasureTheory.instLEDiscreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} :
                Equations
                instance MeasureTheory.instPartialOrderDiscreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} :
                Equations
                • One or more equations did not get rendered due to their size.
                instance MeasureTheory.instSemilatticeInfDiscreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ : ΩWithTop ι} :
                Equations
                • One or more equations did not get rendered due to their size.
                theorem MeasureTheory.DiscreteApproxSequence.discreteApproxSequence_of_le_inf_le_of_left {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {τ σ : ΩWithTop ι} {i : ι} (τn : DiscreteApproxSequence 𝓕 τ μ) (σn : DiscreteApproxSequence 𝓕 σ μ) ( : ∀ (ω : Ω), τ ω i) (m : ) (ω : Ω) :
                ((discreteApproxSequence_of 𝓕 τn).inf σn) m ω i
                theorem MeasureTheory.uniformIntegrable_stoppedValue_discreteApproxSequence_of_le {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (τn : DiscreteApproxSequence 𝓕 τ μ) (hτn_le : ∀ (n : ) (ω : Ω), τn n ω i) :
                UniformIntegrable (fun (m : ) => stoppedValue X (τn m)) 1 μ
                theorem MeasureTheory.uniformIntegrable_stoppedValue_discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) :
                UniformIntegrable (fun (m : ) => stoppedValue X ((discreteApproxSequence_of 𝓕 hτ_le τn) m)) 1 μ
                theorem MeasureTheory.integrable_stoppedValue_of_discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) (m : ) :
                theorem MeasureTheory.aestronglyMeasurable_stoppedValue_of_discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hRC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) :
                theorem MeasureTheory.stoppedValue_ae_eq_condExp_discreteApproxSequence_of {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) (m : ) :
                theorem MeasureTheory.tendsto_eLpNorm_stoppedValue_of_discreteApproxSequence {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hRC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) :
                Filter.Tendsto (fun (i_1 : ) => eLpNorm (stoppedValue X ((discreteApproxSequence_of 𝓕 hτ_le τn) i_1) - stoppedValue X τ) 1 μ) Filter.atTop (nhds 0)
                theorem MeasureTheory.integrable_stoppedValue_of_discreteApproxSequence' {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hRC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (hτ_le : ∀ (ω : Ω), τ ω i) (τn : DiscreteApproxSequence 𝓕 τ μ) :
                theorem MeasureTheory.tendsto_eLpNorm_stoppedValue_of_discreteApproxSequence_of_le {ι : Type u_1} {Ω : Type u_2} [TopologicalSpace ι] [LinearOrder ι] [OrderTopology ι] { : MeasurableSpace Ω} {𝓕 : Filtration ι } {μ : Measure Ω} {X : ιΩ} {τ : ΩWithTop ι} {i : ι} [Nonempty ι] [OrderBot ι] [FirstCountableTopology ι] [IsFiniteMeasure μ] (h : Martingale X 𝓕 μ) (hRC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (τn : DiscreteApproxSequence 𝓕 τ μ) (hτn_le : ∀ (n : ) (ω : Ω), τn n ω i) :
                Filter.Tendsto (fun (i : ) => eLpNorm (stoppedValue X (τn i) - stoppedValue X τ) 1 μ) Filter.atTop (nhds 0)