Documentation

Mathlib.Probability.Process.HittingTime

Hitting times #

Given a stochastic process, the hitting time provides the first time the process "hits" some subset of the state space. The hitting time is a stopping time in the case that the time index is discrete and the process is adapted (this is true in a far more general setting however we have only proved it for the discrete case so far).

Main definition #

Main results #

noncomputable def MeasureTheory.hittingBtwn {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n m : ι) :
Ωι

Hitting time: given a stochastic process u and a set s, hittingBtwn u s n m is the first time u is in s after time n and before time m (if u does not hit s after time n and before m then the hitting time is simply m).

The hitting time is a stopping time if the process is adapted and discrete.

Equations
Instances For
    @[deprecated MeasureTheory.hittingBtwn (since := "2025-10-25")]
    def MeasureTheory.hitting {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n m : ι) :
    Ωι

    Alias of MeasureTheory.hittingBtwn.


    Hitting time: given a stochastic process u and a set s, hittingBtwn u s n m is the first time u is in s after time n and before time m (if u does not hit s after time n and before m then the hitting time is simply m).

    The hitting time is a stopping time if the process is adapted and discrete.

    Equations
    Instances For
      noncomputable def MeasureTheory.hittingAfter {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n : ι) :
      ΩWithTop ι

      Hitting time: given a stochastic process u and a set s, hittingAfter u s n is the first time u is in s after time n (if u does not hit s after time n then the hitting time is ).

      Equations
      Instances For
        theorem MeasureTheory.hittingBtwn_def {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n m : ι) :
        hittingBtwn u s n m = fun (x : Ω) => if jSet.Icc n m, u j x s then sInf (Set.Icc n m {i : ι | u i x s}) else m
        @[deprecated MeasureTheory.hittingBtwn_def (since := "2025-10-25")]
        theorem MeasureTheory.hitting_def {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n m : ι) :
        hittingBtwn u s n m = fun (x : Ω) => if jSet.Icc n m, u j x s then sInf (Set.Icc n m {i : ι | u i x s}) else m

        Alias of MeasureTheory.hittingBtwn_def.

        theorem MeasureTheory.hittingAfter_def {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [Preorder ι] [InfSet ι] (u : ιΩβ) (s : Set β) (n : ι) :
        hittingAfter u s n = fun (x : Ω) => if ∃ (j : ι), n j u j x s then (sInf {i : ι | n i u i x s}) else
        theorem MeasureTheory.hittingBtwn_of_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (h : m < n) :
        hittingBtwn u s n m ω = m

        This lemma is strictly weaker than hittingBtwn_of_le.

        @[deprecated MeasureTheory.hittingBtwn_of_lt (since := "2025-10-25")]
        theorem MeasureTheory.hitting_of_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (h : m < n) :
        hittingBtwn u s n m ω = m

        Alias of MeasureTheory.hittingBtwn_of_lt.


        This lemma is strictly weaker than hittingBtwn_of_le.

        theorem MeasureTheory.hittingBtwn_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (ω : Ω) :
        hittingBtwn u s n m ω m
        @[deprecated MeasureTheory.hittingBtwn_le (since := "2025-10-25")]
        theorem MeasureTheory.hitting_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (ω : Ω) :
        hittingBtwn u s n m ω m

        Alias of MeasureTheory.hittingBtwn_le.

        theorem MeasureTheory.notMem_of_lt_hittingBtwn {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m k : ι} (hk₁ : k < hittingBtwn u s n m ω) (hk₂ : n k) :
        u k ωs
        @[deprecated MeasureTheory.notMem_of_lt_hittingBtwn (since := "2025-10-25")]
        theorem MeasureTheory.notMem_of_lt_hitting {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m k : ι} (hk₁ : k < hittingBtwn u s n m ω) (hk₂ : n k) :
        u k ωs

        Alias of MeasureTheory.notMem_of_lt_hittingBtwn.

        @[deprecated MeasureTheory.notMem_of_lt_hittingBtwn (since := "2025-05-23")]
        theorem MeasureTheory.not_mem_of_lt_hitting {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m k : ι} (hk₁ : k < hittingBtwn u s n m ω) (hk₂ : n k) :
        u k ωs

        Alias of MeasureTheory.notMem_of_lt_hittingBtwn.

        theorem MeasureTheory.notMem_of_lt_hittingAfter {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {k : ι} (hk₁ : k < hittingAfter u s n ω) (hk₂ : n k) :
        u k ωs
        theorem MeasureTheory.hittingBtwn_eq_end_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} :
        hittingBtwn u s n m ω = m (∃ jSet.Icc n m, u j ω s)sInf (Set.Icc n m {i : ι | u i ω s}) = m
        @[deprecated MeasureTheory.hittingBtwn_eq_end_iff (since := "2025-10-25")]
        theorem MeasureTheory.hitting_eq_end_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} :
        hittingBtwn u s n m ω = m (∃ jSet.Icc n m, u j ω s)sInf (Set.Icc n m {i : ι | u i ω s}) = m

        Alias of MeasureTheory.hittingBtwn_eq_end_iff.

        theorem MeasureTheory.hittingAfter_eq_top_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} :
        hittingAfter u s n ω = ∀ (j : ι), n ju j ωs
        theorem MeasureTheory.hittingBtwn_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (hmn : m n) :
        hittingBtwn u s n m ω = m
        @[deprecated MeasureTheory.hittingBtwn_of_le (since := "2025-10-25")]
        theorem MeasureTheory.hitting_of_le {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (hmn : m n) :
        hittingBtwn u s n m ω = m

        Alias of MeasureTheory.hittingBtwn_of_le.

        theorem MeasureTheory.le_hittingBtwn {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (hnm : n m) (ω : Ω) :
        n hittingBtwn u s n m ω
        @[deprecated MeasureTheory.le_hittingBtwn (since := "2025-10-25")]
        theorem MeasureTheory.le_hitting {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (hnm : n m) (ω : Ω) :
        n hittingBtwn u s n m ω

        Alias of MeasureTheory.le_hittingBtwn.

        theorem MeasureTheory.le_hittingAfter {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} (ω : Ω) :
        n hittingAfter u s n ω
        theorem MeasureTheory.le_hittingBtwn_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        n hittingBtwn u s n m ω
        @[deprecated MeasureTheory.le_hittingBtwn_of_exists (since := "2025-10-25")]
        theorem MeasureTheory.le_hitting_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        n hittingBtwn u s n m ω

        Alias of MeasureTheory.le_hittingBtwn_of_exists.

        theorem MeasureTheory.hittingBtwn_mem_Icc {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (hnm : n m) (ω : Ω) :
        hittingBtwn u s n m ω Set.Icc n m
        @[deprecated MeasureTheory.hittingBtwn_mem_Icc (since := "2025-10-25")]
        theorem MeasureTheory.hitting_mem_Icc {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n m : ι} (hnm : n m) (ω : Ω) :
        hittingBtwn u s n m ω Set.Icc n m

        Alias of MeasureTheory.hittingBtwn_mem_Icc.

        theorem MeasureTheory.hittingBtwn_mem_set {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        u (hittingBtwn u s n m ω) ω s
        @[deprecated MeasureTheory.hittingBtwn_mem_set (since := "2025-10-25")]
        theorem MeasureTheory.hitting_mem_set {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        u (hittingBtwn u s n m ω) ω s

        Alias of MeasureTheory.hittingBtwn_mem_set.

        theorem MeasureTheory.hittingAfter_mem_set {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] (h_exists : ∃ (j : ι), n j u j ω s) :
        u (hittingAfter u s n ω).untopA ω s
        theorem MeasureTheory.hittingBtwn_mem_set_of_hittingBtwn_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (hl : hittingBtwn u s n m ω < m) :
        u (hittingBtwn u s n m ω) ω s
        @[deprecated MeasureTheory.hittingBtwn_mem_set_of_hittingBtwn_lt (since := "2025-10-25")]
        theorem MeasureTheory.hitting_mem_set_of_hitting_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (hl : hittingBtwn u s n m ω < m) :
        u (hittingBtwn u s n m ω) ω s

        Alias of MeasureTheory.hittingBtwn_mem_set_of_hittingBtwn_lt.

        theorem MeasureTheory.hittingAfter_mem_set_of_ne_top {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] (hl : hittingAfter u s n ω ) :
        u (hittingAfter u s n ω).untopA ω s
        theorem MeasureTheory.hittingBtwn_le_of_mem {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} {m : ι} (hin : n i) (him : i m) (his : u i ω s) :
        hittingBtwn u s n m ω i
        @[deprecated MeasureTheory.hittingBtwn_le_of_mem (since := "2025-10-25")]
        theorem MeasureTheory.hitting_le_of_mem {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} {m : ι} (hin : n i) (him : i m) (his : u i ω s) :
        hittingBtwn u s n m ω i

        Alias of MeasureTheory.hittingBtwn_le_of_mem.

        theorem MeasureTheory.hittingAfter_le_of_mem {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} (hin : n i) (his : u i ω s) :
        hittingAfter u s n ω i
        theorem MeasureTheory.hittingBtwn_le_iff_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        hittingBtwn u s n m ω i jSet.Icc n i, u j ω s
        @[deprecated MeasureTheory.hittingBtwn_le_iff_of_exists (since := "2025-10-25")]
        theorem MeasureTheory.hitting_le_iff_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (h_exists : jSet.Icc n m, u j ω s) :
        hittingBtwn u s n m ω i jSet.Icc n i, u j ω s

        Alias of MeasureTheory.hittingBtwn_le_iff_of_exists.

        theorem MeasureTheory.hittingAfter_le_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} [WellFoundedLT ι] :
        hittingAfter u s n ω i jSet.Icc n i, u j ω s
        theorem MeasureTheory.hittingBtwn_le_iff_of_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (i : ι) (hi : i < m) :
        hittingBtwn u s n m ω i jSet.Icc n i, u j ω s
        @[deprecated MeasureTheory.hittingBtwn_le_iff_of_lt (since := "2025-10-25")]
        theorem MeasureTheory.hitting_le_iff_of_lt {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (i : ι) (hi : i < m) :
        hittingBtwn u s n m ω i jSet.Icc n i, u j ω s

        Alias of MeasureTheory.hittingBtwn_le_iff_of_lt.

        theorem MeasureTheory.hittingBtwn_lt_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (i : ι) (hi : i m) :
        hittingBtwn u s n m ω < i jSet.Ico n i, u j ω s
        @[deprecated MeasureTheory.hittingBtwn_lt_iff (since := "2025-10-25")]
        theorem MeasureTheory.hitting_lt_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} [WellFoundedLT ι] {m : ι} (i : ι) (hi : i m) :
        hittingBtwn u s n m ω < i jSet.Ico n i, u j ω s

        Alias of MeasureTheory.hittingBtwn_lt_iff.

        theorem MeasureTheory.hittingAfter_lt_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n i : ι} {ω : Ω} [WellFoundedLT ι] :
        hittingAfter u s n ω < i jSet.Ico n i, u j ω s
        theorem MeasureTheory.hittingBtwn_eq_hittingBtwn_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m₁ m₂ : ι} (h : m₁ m₂) (h' : jSet.Icc n m₁, u j ω s) :
        hittingBtwn u s n m₁ ω = hittingBtwn u s n m₂ ω
        @[deprecated MeasureTheory.hittingBtwn_eq_hittingBtwn_of_exists (since := "2025-10-25")]
        theorem MeasureTheory.hitting_eq_hitting_of_exists {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m₁ m₂ : ι} (h : m₁ m₂) (h' : jSet.Icc n m₁, u j ω s) :
        hittingBtwn u s n m₁ ω = hittingBtwn u s n m₂ ω

        Alias of MeasureTheory.hittingBtwn_eq_hittingBtwn_of_exists.

        theorem MeasureTheory.hittingBtwn_mono {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m₁ m₂ : ι} (hm : m₁ m₂) :
        hittingBtwn u s n m₁ ω hittingBtwn u s n m₂ ω
        @[deprecated MeasureTheory.hittingBtwn_mono (since := "2025-10-25")]
        theorem MeasureTheory.hitting_mono {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] {u : ιΩβ} {s : Set β} {n : ι} {ω : Ω} {m₁ m₂ : ι} (hm : m₁ m₂) :
        hittingBtwn u s n m₁ ω hittingBtwn u s n m₂ ω

        Alias of MeasureTheory.hittingBtwn_mono.

        theorem MeasureTheory.hittingBtwn_isStoppingTime {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] [Countable ι] [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] {f : Filtration ι m} {u : ιΩβ} {s : Set β} {n n' : ι} (hu : Adapted f u) (hs : MeasurableSet s) :
        IsStoppingTime f fun (ω : Ω) => (hittingBtwn u s n n' ω)

        A discrete hitting time is a stopping time.

        @[deprecated MeasureTheory.hittingBtwn_isStoppingTime (since := "2025-10-25")]
        theorem MeasureTheory.hitting_isStoppingTime {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] [Countable ι] [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] {f : Filtration ι m} {u : ιΩβ} {s : Set β} {n n' : ι} (hu : Adapted f u) (hs : MeasurableSet s) :
        IsStoppingTime f fun (ω : Ω) => (hittingBtwn u s n n' ω)

        Alias of MeasureTheory.hittingBtwn_isStoppingTime.


        A discrete hitting time is a stopping time.

        theorem MeasureTheory.hittingAfter_isStoppingTime {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] [Countable ι] [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] {f : Filtration ι m} {u : ιΩβ} {s : Set β} {n : ι} (hu : Adapted f u) (hs : MeasurableSet s) :

        A discrete hitting time is a stopping time.

        theorem MeasureTheory.stoppedValue_hittingBtwn_mem {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] {u : ιΩβ} {s : Set β} {n m : ι} {ω : Ω} (h : jSet.Icc n m, u j ω s) :
        stoppedValue u (fun (ω : Ω) => (hittingBtwn u s n m ω)) ω s
        @[deprecated MeasureTheory.stoppedValue_hittingBtwn_mem (since := "2025-10-25")]
        theorem MeasureTheory.stoppedValue_hitting_mem {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] {u : ιΩβ} {s : Set β} {n m : ι} {ω : Ω} (h : jSet.Icc n m, u j ω s) :
        stoppedValue u (fun (ω : Ω) => (hittingBtwn u s n m ω)) ω s

        Alias of MeasureTheory.stoppedValue_hittingBtwn_mem.

        theorem MeasureTheory.isStoppingTime_hittingBtwn_isStoppingTime {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] [Countable ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] {f : Filtration ι m} {u : ιΩβ} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {N : ι} (hτbdd : ∀ (x : Ω), τ x N) {s : Set β} (hs : MeasurableSet s) (hf : Adapted f u) :
        IsStoppingTime f fun (x : Ω) => (hittingBtwn u s (τ x).untopA N x)

        The hitting time of a discrete process with the starting time indexed by a stopping time is a stopping time.

        @[deprecated MeasureTheory.isStoppingTime_hittingBtwn_isStoppingTime (since := "2025-10-25")]
        theorem MeasureTheory.isStoppingTime_hitting_isStoppingTime {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} {m : MeasurableSpace Ω} [ConditionallyCompleteLinearOrder ι] [WellFoundedLT ι] [Countable ι] [TopologicalSpace ι] [OrderTopology ι] [FirstCountableTopology ι] [TopologicalSpace β] [TopologicalSpace.PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β] {f : Filtration ι m} {u : ιΩβ} {τ : ΩWithTop ι} ( : IsStoppingTime f τ) {N : ι} (hτbdd : ∀ (x : Ω), τ x N) {s : Set β} (hs : MeasurableSet s) (hf : Adapted f u) :
        IsStoppingTime f fun (x : Ω) => (hittingBtwn u s (τ x).untopA N x)

        Alias of MeasureTheory.isStoppingTime_hittingBtwn_isStoppingTime.


        The hitting time of a discrete process with the starting time indexed by a stopping time is a stopping time.

        theorem MeasureTheory.hittingBtwn_eq_sInf {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [CompleteLattice ι] {u : ιΩβ} {s : Set β} (ω : Ω) :
        hittingBtwn u s ω = sInf {i : ι | u i ω s}
        @[deprecated MeasureTheory.hittingBtwn_eq_sInf (since := "2025-10-25")]
        theorem MeasureTheory.hitting_eq_sInf {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [CompleteLattice ι] {u : ιΩβ} {s : Set β} (ω : Ω) :
        hittingBtwn u s ω = sInf {i : ι | u i ω s}

        Alias of MeasureTheory.hittingBtwn_eq_sInf.

        theorem MeasureTheory.hittingAfter_eq_sInf {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [CompleteLattice ι] {u : ιΩβ} {s : Set β} [(ω : Ω) → Decidable (∃ (j : ι), u j ω s)] (ω : Ω) :
        hittingAfter u s ω = if ∃ (j : ι), u j ω s then (sInf {i : ι | u i ω s}) else
        theorem MeasureTheory.hittingBtwn_bot_le_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrderBot ι] [WellFoundedLT ι] {u : ιΩβ} {s : Set β} {i n : ι} {ω : Ω} (hx : jn, u j ω s) :
        hittingBtwn u s n ω i ji, u j ω s
        @[deprecated MeasureTheory.hittingBtwn_bot_le_iff (since := "2025-10-25")]
        theorem MeasureTheory.hitting_bot_le_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrderBot ι] [WellFoundedLT ι] {u : ιΩβ} {s : Set β} {i n : ι} {ω : Ω} (hx : jn, u j ω s) :
        hittingBtwn u s n ω i ji, u j ω s

        Alias of MeasureTheory.hittingBtwn_bot_le_iff.

        theorem MeasureTheory.hittingAfter_bot_le_iff {Ω : Type u_1} {β : Type u_2} {ι : Type u_3} [ConditionallyCompleteLinearOrderBot ι] [WellFoundedLT ι] {u : ιΩβ} {s : Set β} {i : ι} {ω : Ω} :
        hittingAfter u s ω i ji, u j ω s