Documentation

BrownianMotion.StochasticIntegral.Locally

Local properties of processes #

structure ProbabilityTheory.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) (P : MeasureTheory.Measure Ω := by volume_tac) :

A localizing sequence is a sequence of stopping times that is almost surely increasing and tends almost surely to infinity.

Instances For
    theorem ProbabilityTheory.isLocalizingSequence_const_top {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) :
    IsLocalizingSequence 𝓕 (fun (x : ) (x_1 : Ω) => ) P
    @[simp]
    theorem ProbabilityTheory.stoppedProcess_const_top {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] {X : ιΩE} :
    (MeasureTheory.stoppedProcess X fun (x : Ω) => ) = X
    def ProbabilityTheory.Locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [Zero E] (p : (ιΩE)Prop) (𝓕 : MeasureTheory.Filtration ι ) (X : ιΩE) (P : MeasureTheory.Measure Ω := by volume_tac) :

    A stochastic process X is said to satisfy a property p locally with respect to a filtration 𝓕 if there exists a localizing sequence (τ_n) such that for all n, the stopped process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def ProbabilityTheory.Locally.localSeq {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] (hX : Locally p 𝓕 X P) :
      ΩWithTop ι

      A localizing sequence, witness of the local property of the stochastic process.

      Equations
      Instances For
        theorem ProbabilityTheory.Locally.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] (hX : Locally p 𝓕 X P) :
        theorem ProbabilityTheory.Locally.stoppedProcess {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] (hX : Locally p 𝓕 X P) (n : ) :
        p (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < hX.localSeq n ω}.indicator (X i)) (hX.localSeq n))
        theorem ProbabilityTheory.locally_of_prop {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] (hp : p X) :
        Locally p 𝓕 X P
        theorem ProbabilityTheory.Locally.mono {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [Zero E] (hpq : ∀ (X : ιΩE), p Xq X) (hpX : Locally p 𝓕 X P) :
        Locally q 𝓕 X P
        def ProbabilityTheory.IsStable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [Zero E] (p : (ιΩE)Prop) (𝓕 : MeasureTheory.Filtration ι ) :

        A property of stochastic processes is said to be stable if it is preserved under taking the stopped process by a stopping time.

        Equations
        Instances For
          theorem ProbabilityTheory.locally_and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [Zero E] (hp : IsStable p 𝓕) (hq : IsStable q 𝓕) :
          Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P Locally p 𝓕 X P Locally q 𝓕 X P
          theorem ProbabilityTheory.locally_locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] (hp : IsStable p 𝓕) :
          Locally (fun (Y : ιΩE) => Locally p 𝓕 Y P) 𝓕 X P Locally p 𝓕 X P
          theorem ProbabilityTheory.locally_induction {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [Zero E] (hpq : ∀ (Y : ιΩE), p YLocally q 𝓕 Y P) (hq : IsStable q 𝓕) (hpX : Locally p 𝓕 X P) :
          Locally q 𝓕 X P

          If p implies q locally, then p locally implies q locally.