Local properties of processes #
structure
ProbabilityTheory.IsLocalizingSequence
{ι : Type u_1}
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
[Preorder ι]
(𝓕 : MeasureTheory.Filtration ι mΩ)
(τ : ℕ → Ω → WithTop ι)
(P : MeasureTheory.Measure Ω := by volume_tac)
 :
A localizing sequence is a sequence of stopping times that is almost surely increasing and tends almost surely to infinity.
- isStoppingTime (n : ℕ) : MeasureTheory.IsStoppingTime 𝓕 (τ n)
- tendsto_top : ∀ᵐ (ω : Ω) ∂P, Filter.Tendsto (fun (x : ℕ) => τ x ω) Filter.atTop Filter.atTop
Instances For
theorem
ProbabilityTheory.isLocalizingSequence_const_top
{ι : Type u_1}
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
[Preorder ι]
(𝓕 : MeasureTheory.Filtration ι mΩ)
(P : MeasureTheory.Measure Ω)
 :
IsLocalizingSequence 𝓕 (fun (x : ℕ) (x_1 : Ω) => ⊤) P
@[simp]
theorem
ProbabilityTheory.stoppedProcess_const_top
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
[LinearOrder ι]
[OrderBot ι]
{X : ι → Ω → E}
 :
def
ProbabilityTheory.Locally
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
[LinearOrder ι]
[OrderBot ι]
[Zero E]
(p : (ι → Ω → E) → Prop)
(𝓕 : MeasureTheory.Filtration ι mΩ)
(X : ι → Ω → E)
(P : MeasureTheory.Measure Ω := by volume_tac)
 :
A stochastic process X is said to satisfy a property p locally with respect to a
filtration 𝓕 if there exists a localizing sequence (τ_n) such that for all n, the stopped
process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ProbabilityTheory.Locally.localSeq
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p : (ι → Ω → E) → Prop}
[Zero E]
(hX : Locally p 𝓕 X P)
 :
A localizing sequence, witness of the local property of the stochastic process.
Equations
- hX.localSeq = Exists.choose hX
Instances For
theorem
ProbabilityTheory.Locally.IsLocalizingSequence
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p : (ι → Ω → E) → Prop}
[Zero E]
(hX : Locally p 𝓕 X P)
 :
theorem
ProbabilityTheory.Locally.stoppedProcess
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p : (ι → Ω → E) → Prop}
[Zero E]
(hX : Locally p 𝓕 X P)
(n : ℕ)
 :
theorem
ProbabilityTheory.locally_of_prop
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p : (ι → Ω → E) → Prop}
[Zero E]
(hp : p X)
 :
Locally p 𝓕 X P
theorem
ProbabilityTheory.Locally.mono
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p q : (ι → Ω → E) → Prop}
[Zero E]
(hpq : ∀ (X : ι → Ω → E), p X → q X)
(hpX : Locally p 𝓕 X P)
 :
Locally q 𝓕 X P
def
ProbabilityTheory.IsStable
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
[LinearOrder ι]
[OrderBot ι]
[Zero E]
(p : (ι → Ω → E) → Prop)
(𝓕 : MeasureTheory.Filtration ι mΩ)
 :
A property of stochastic processes is said to be stable if it is preserved under taking the stopped process by a stopping time.
Equations
Instances For
theorem
ProbabilityTheory.locally_and
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p q : (ι → Ω → E) → Prop}
[Zero E]
(hp : IsStable p 𝓕)
(hq : IsStable q 𝓕)
 :
theorem
ProbabilityTheory.locally_locally
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p : (ι → Ω → E) → Prop}
[Zero E]
(hp : IsStable p 𝓕)
 :
theorem
ProbabilityTheory.locally_induction
{ι : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[LinearOrder ι]
[OrderBot ι]
{𝓕 : MeasureTheory.Filtration ι mΩ}
{X : ι → Ω → E}
{p q : (ι → Ω → E) → Prop}
[Zero E]
(hpq : ∀ (Y : ι → Ω → E), p Y → Locally q 𝓕 Y P)
(hq : IsStable q 𝓕)
(hpX : Locally p 𝓕 X P)
 :
Locally q 𝓕 X P
If p implies q locally, then p locally implies q locally.