Documentation

BrownianMotion.StochasticIntegral.Locally

Local properties of processes #

structure ProbabilityTheory.IsPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) (P : MeasureTheory.Measure Ω := by volume_tac) :

A localizing sequence is a sequence of stopping times that tends almost surely to infinity.

Instances For
    structure ProbabilityTheory.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (τ : ΩWithTop ι) (P : MeasureTheory.Measure Ω := by volume_tac) extends ProbabilityTheory.IsPreLocalizingSequence 𝓕 τ P :

    A localizing sequence is a sequence of stopping times that is almost surely increasing and tends almost surely to infinity.

    Instances For
      theorem ProbabilityTheory.isLocalizingSequence_const_top {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [Preorder ι] [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) :
      IsLocalizingSequence 𝓕 (fun (x : ) (x_1 : Ω) => ) P
      theorem ProbabilityTheory.IsLocalizingSequence.min {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] {τ σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : IsLocalizingSequence 𝓕 σ P) :
      IsLocalizingSequence 𝓕 (τσ) P
      @[simp]
      theorem ProbabilityTheory.stoppedProcess_const_top {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] {X : ιΩE} [OrderBot ι] :
      (MeasureTheory.stoppedProcess X fun (x : Ω) => ) = X
      def ProbabilityTheory.Locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (p : (ιΩE)Prop) (𝓕 : MeasureTheory.Filtration ι ) (X : ιΩE) (P : MeasureTheory.Measure Ω := by volume_tac) :

      A stochastic process X is said to satisfy a property p locally with respect to a filtration 𝓕 if there exists a localizing sequence (τ_n) such that for all n, the stopped process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def ProbabilityTheory.Locally.localSeq {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) :
        ΩWithTop ι

        A localizing sequence, witness of the local property of the stochastic process.

        Equations
        Instances For
          theorem ProbabilityTheory.Locally.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) :
          theorem ProbabilityTheory.Locally.stoppedProcess {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) (n : ) :
          p (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < hX.localSeq n ω}.indicator (X i)) (hX.localSeq n))
          theorem ProbabilityTheory.locally_of_prop {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hp : p X) :
          Locally p 𝓕 X P
          theorem ProbabilityTheory.Locally.mono {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hpq : ∀ (X : ιΩE), p Xq X) (hpX : Locally p 𝓕 X P) :
          Locally q 𝓕 X P
          theorem ProbabilityTheory.Locally.of_and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
          Locally p 𝓕 X P Locally q 𝓕 X P
          theorem ProbabilityTheory.Locally.of_and_left {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
          Locally p 𝓕 X P
          theorem ProbabilityTheory.Locally.of_and_right {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
          Locally q 𝓕 X P
          def ProbabilityTheory.IsStable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [Zero E] (𝓕 : MeasureTheory.Filtration ι ) (p : (ιΩE)Prop) :

          A property of stochastic processes is said to be stable if it is preserved under taking the stopped process by a stopping time.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem ProbabilityTheory.IsStable.and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [Zero E] (p q : (ιΩE)Prop) (hp : IsStable 𝓕 p) (hq : IsStable 𝓕 q) :
            IsStable 𝓕 fun (X : ιΩE) => p X q X
            theorem ProbabilityTheory.IsStable.isStable_locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {p : (ιΩE)Prop} [OrderBot ι] [Zero E] [TopologicalSpace ι] [OrderTopology ι] (hp : IsStable 𝓕 p) :
            IsStable 𝓕 fun (Y : ιΩE) => Locally p 𝓕 Y P
            theorem ProbabilityTheory.locally_and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [OrderBot ι] [Zero E] [TopologicalSpace ι] [OrderTopology ι] (hp : IsStable 𝓕 p) (hq : IsStable 𝓕 q) :
            Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P Locally p 𝓕 X P Locally q 𝓕 X P
            theorem ProbabilityTheory.measure_iInter_of_ae_antitone {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {ι : Type u_4} [Countable ι] [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {s : ιSet Ω} (hs : ∀ᵐ (ω : Ω) P, Antitone fun (x : ι) => s x ω) (hsm : ∀ (i : ι), MeasureTheory.NullMeasurableSet (s i) P) (hfin : ∃ (i : ι), P (s i) ) :
            P (⋂ (i : ι), s i) = ⨅ (i : ι), P (s i)
            theorem ProbabilityTheory.isLocalizingSequence_of_isPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {τ : ΩWithTop ι} (h𝓕 : 𝓕.IsRightContinuous) ( : IsPreLocalizingSequence 𝓕 τ P) :
            IsLocalizingSequence 𝓕 (fun (i : ) (ω : Ω) => ⨅ (j : ), ⨅ (_ : j i), τ j ω) P
            theorem ProbabilityTheory.locally_of_isPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] {τ : ΩWithTop ι} (hp : IsStable 𝓕 p) (h𝓕 : 𝓕.IsRightContinuous) ( : IsPreLocalizingSequence 𝓕 τ P) (hpτ : ∀ (n : ), p (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < τ n ω}.indicator (X i)) (τ n))) :
            Locally p 𝓕 X P

            A stable property holds locally p for X if there exists a pre-localizing sequence τ for which the stopped process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.

            theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence_aux' {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
            ∃ (T : ι), Filter.Tendsto T Filter.atTop Filter.atTop ∀ (n : ), ∃ (k : ), P {ω : Ω | σ n k ω < min (τ n ω) (T n)} (1 / 2) ^ n

            Auxliary defintion for isPreLocalizingSequence_of_isLocalizingSequence which constructs a strictly increasing sequence from a given sequence.

            Equations
            Instances For
              theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence_aux {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
              ∃ (nk : ), StrictMono nk ∃ (T : ι), Filter.Tendsto T Filter.atTop Filter.atTop ∀ (n : ), P {ω : Ω | σ n (nk n) ω < min (τ n ω) (T n)} (1 / 2) ^ n
              theorem ProbabilityTheory.isPreLocalizingSequence_of_isLocalizingSequence {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] [NoMaxOrder ι] {τ : ΩWithTop ι} {σ : ΩWithTop ι} ( : IsLocalizingSequence 𝓕 τ P) ( : ∀ (n : ), IsLocalizingSequence 𝓕 (σ n) P) :
              ∃ (nk : ), StrictMono nk IsPreLocalizingSequence 𝓕 (fun (i : ) (ω : Ω) => min (τ i ω) (σ i (nk i) ω)) P
              theorem ProbabilityTheory.locally_locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] [DenselyOrdered ι] [NoMaxOrder ι] [Zero E] (h𝓕 : 𝓕.IsRightContinuous) (hp : IsStable 𝓕 p) :
              Locally (fun (Y : ιΩE) => Locally p 𝓕 Y P) 𝓕 X P Locally p 𝓕 X P

              A stable property holding locally is idempotent.

              theorem ProbabilityTheory.locally_induction {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [SecondCountableTopology ι] [MeasureTheory.IsFiniteMeasure P] [DenselyOrdered ι] [NoMaxOrder ι] [Zero E] (h𝓕 : 𝓕.IsRightContinuous) (hpq : ∀ (Y : ιΩE), p YLocally q 𝓕 Y P) (hq : IsStable 𝓕 q) (hpX : Locally p 𝓕 X P) :
              Locally q 𝓕 X P

              If p implies q locally, then p locally implies q locally.

              noncomputable def ProbabilityTheory.LocalizingSequence_of_prop {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] (X : ιΩE) (p : (ιE)Prop) :
              ΩWithTop ι

              Given a property on paths which holds almost surely for a stochastic process, we construct a localizing sequence by setting the stopping time to be ∞ whenever the property holds.

              Equations
              Instances For
                theorem ProbabilityTheory.isStoppingTime_ae_const {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) [𝓕.HasUsualConditions P] (τ : ΩWithTop ι) (c : WithTop ι) ( : τ =ᵐ[P] Function.const Ω c) :
                theorem ProbabilityTheory.isLocalizingSequence_ae {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω) [𝓕.HasUsualConditions P] {p : (ιE)Prop} (hpX : ∀ᵐ (ω : Ω) P, p fun (x : ι) => X x ω) :
                theorem ProbabilityTheory.locally_of_ae {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] {p : (ιE)Prop} (hpX : ∀ᵐ (ω : Ω) P, p fun (x : ι) => X x ω) (hp₀ : p 0) :
                Locally (fun (X : ιΩE) => ∀ (ω : Ω), p fun (x : ι) => X x ω) 𝓕 X P
                theorem ProbabilityTheory.Locally.rightContinuous {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) 𝓕 X P) :
                ∀ᵐ (ω : Ω) P, Function.RightContinuous fun (x : ι) => X x ω
                theorem ProbabilityTheory.locally_rightContinuous_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] :
                Locally (fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) 𝓕 X P ∀ᵐ (ω : Ω) P, Function.RightContinuous fun (x : ι) => X x ω
                theorem ProbabilityTheory.Locally.left_limit {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)) 𝓕 X P) :
                ∀ᵐ (ω : Ω) P, ∀ (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)
                theorem ProbabilityTheory.locally_left_limit_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] :
                Locally (fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)) 𝓕 X P ∀ᵐ (ω : Ω) P, ∀ (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)
                theorem ProbabilityTheory.Locally.isCadlag {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P) :
                ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω
                theorem ProbabilityTheory.locally_isCadlag_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [𝓕.HasUsualConditions P] [NormedSpace E] [CompleteSpace E] :
                Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω
                theorem ProbabilityTheory.isStable_rightContinuous {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
                IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω
                theorem ProbabilityTheory.isStable_left_limit {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
                IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)
                theorem ProbabilityTheory.isStable_isCadlag {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
                IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω
                theorem ProbabilityTheory.locally_isCadlag_iff_locally_ae {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [DenselyOrdered ι] [NoMaxOrder ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [MeasureTheory.IsFiniteMeasure P] {𝓕 : MeasureTheory.Filtration ι } [𝓕.HasUsualConditions P] {X : ιΩE} :
                Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P Locally (fun (X : ιΩE) => ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω) 𝓕 X P