Documentation

BrownianMotion.StochasticIntegral.Locally

Local properties of processes #

def ProbabilityTheory.Locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] (p : (ιΩE)Prop) (𝓕 : MeasureTheory.Filtration ι ) (X : ιΩE) (P : MeasureTheory.Measure Ω := by volume_tac) :

A stochastic process X is said to satisfy a property p locally with respect to a filtration 𝓕 if there exists a localizing sequence (τ_n) such that for all n, the stopped process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def ProbabilityTheory.Locally.localSeq {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) :
    ΩWithTop ι

    A localizing sequence, witness of the local property of the stochastic process.

    Equations
    Instances For
      theorem ProbabilityTheory.Locally.IsLocalizingSequence {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) :
      theorem ProbabilityTheory.Locally.stoppedProcess {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally p 𝓕 X P) (n : ) :
      p (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < hX.localSeq n ω}.indicator (X i)) (hX.localSeq n))
      theorem ProbabilityTheory.locally_of_prop {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hp : p X) :
      Locally p 𝓕 X P
      theorem ProbabilityTheory.Locally.mono {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hpq : ∀ (X : ιΩE), p Xq X) (hpX : Locally p 𝓕 X P) :
      Locally q 𝓕 X P
      theorem ProbabilityTheory.Locally.of_and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
      Locally p 𝓕 X P Locally q 𝓕 X P
      theorem ProbabilityTheory.Locally.of_and_left {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
      Locally p 𝓕 X P
      theorem ProbabilityTheory.Locally.of_and_right {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [TopologicalSpace ι] [OrderTopology ι] [Zero E] (hX : Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P) :
      Locally q 𝓕 X P
      def ProbabilityTheory.IsStable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [Zero E] (𝓕 : MeasureTheory.Filtration ι ) (p : (ιΩE)Prop) :

      A property of stochastic processes is said to be stable if it is preserved under taking the stopped process by a stopping time.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem ProbabilityTheory.IsStable.and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } [Zero E] (p q : (ιΩE)Prop) (hp : IsStable 𝓕 p) (hq : IsStable 𝓕 q) :
        IsStable 𝓕 fun (X : ιΩE) => p X q X
        theorem ProbabilityTheory.IsStable.isStable_locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {p : (ιΩE)Prop} [Zero E] [TopologicalSpace ι] [OrderTopology ι] (hp : IsStable 𝓕 p) :
        IsStable 𝓕 fun (Y : ιΩE) => Locally p 𝓕 Y P
        theorem ProbabilityTheory.locally_and {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [Zero E] [TopologicalSpace ι] [OrderTopology ι] (hp : IsStable 𝓕 p) (hq : IsStable 𝓕 q) :
        Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P Locally p 𝓕 X P Locally q 𝓕 X P
        theorem ProbabilityTheory.locally_and_of_isStable {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [Zero E] [TopologicalSpace ι] [OrderTopology ι] (hp : IsStable 𝓕 p) (hpX : p X) (hqX : Locally q 𝓕 X P) :
        Locally (fun (Y : ιΩE) => p Y q Y) 𝓕 X P
        theorem ProbabilityTheory.locally_of_isPreLocalizingSequence {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [Zero E] {τ : ΩWithTop ι} (hp : IsStable 𝓕 p) (h𝓕 : 𝓕.IsRightContinuous) ( : IsPreLocalizingSequence 𝓕 τ P) (hpτ : ∀ (n : ), p (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < τ n ω}.indicator (X i)) (τ n))) :
        Locally p 𝓕 X P

        A stable property holds locally p for X if there exists a pre-localizing sequence τ for which the stopped process of fun i ↦ {ω | ⊥ < τ n ω}.indicator (X i) satisfies p.

        theorem ProbabilityTheory.locally_locally {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p : (ιΩE)Prop} [SecondCountableTopology ι] [DenselyOrdered ι] [Zero E] [MeasureTheory.IsFiniteMeasure P] (h𝓕 : 𝓕.IsRightContinuous) (hp : IsStable 𝓕 p) :
        Locally (fun (Y : ιΩE) => Locally p 𝓕 Y P) 𝓕 X P Locally p 𝓕 X P

        A stable property holding locally is idempotent.

        theorem ProbabilityTheory.locally_induction {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [SecondCountableTopology ι] [DenselyOrdered ι] [Zero E] [MeasureTheory.IsFiniteMeasure P] (h𝓕 : 𝓕.IsRightContinuous) (hpq : ∀ (Y : ιΩE), p YLocally q 𝓕 Y P) (hq : IsStable 𝓕 q) (hpX : Locally p 𝓕 X P) :
        Locally q 𝓕 X P

        If p implies q locally, then p locally implies q locally.

        theorem ProbabilityTheory.locally_induction₂ {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NoMaxOrder ι] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} {p q : (ιΩE)Prop} [SecondCountableTopology ι] [DenselyOrdered ι] [Zero E] [MeasureTheory.IsFiniteMeasure P] {r : (ιΩE)Prop} (h𝓕 : 𝓕.IsRightContinuous) (hrpq : ∀ (Y : ιΩE), r Yp YLocally q 𝓕 Y P) (hr : IsStable 𝓕 r) (hp : IsStable 𝓕 p) (hq : IsStable 𝓕 q) (hrX : Locally r 𝓕 X P) (hpX : Locally p 𝓕 X P) :
        Locally q 𝓕 X P
        theorem ProbabilityTheory.locally_of_ae {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [𝓕.HasUsualConditions P] {p : (ιE)Prop} (hpX : ∀ᵐ (ω : Ω) P, p fun (x : ι) => X x ω) (hp₀ : p 0) :
        Locally (fun (X : ιΩE) => ∀ (ω : Ω), p fun (x : ι) => X x ω) 𝓕 X P

        If the filtration satisfies the usual conditions, then a property of the paths of a process that holds almost surely holds locally.

        theorem ProbabilityTheory.Locally.rightContinuous {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) 𝓕 X P) :
        ∀ᵐ (ω : Ω) P, Function.RightContinuous fun (x : ι) => X x ω
        theorem ProbabilityTheory.Locally.left_limit {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)) 𝓕 X P) :
        ∀ᵐ (ω : Ω) P, ∀ (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)
        theorem ProbabilityTheory.Locally.isCadlag {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] (hX : Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P) :
        ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω
        theorem ProbabilityTheory.isStable_rightContinuous {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace E] :
        IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω

        The processes with right-continuous paths are a stable class.

        theorem ProbabilityTheory.isStable_left_limit {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace E] :
        IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)

        The processes with left limits are a stable class.

        theorem ProbabilityTheory.isStable_isCadlag {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } [TopologicalSpace E] :
        IsStable 𝓕 fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω

        The càdlàg processes are a stable class.

        theorem ProbabilityTheory.locally_rightContinuous_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] [𝓕.HasUsualConditions P] :
        Locally (fun (X : ιΩE) => ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) 𝓕 X P ∀ᵐ (ω : Ω) P, Function.RightContinuous fun (x : ι) => X x ω
        theorem ProbabilityTheory.locally_left_limit_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] [𝓕.HasUsualConditions P] :
        Locally (fun (X : ιΩE) => ∀ (ω : Ω) (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)) 𝓕 X P ∀ᵐ (ω : Ω) P, ∀ (x : ι), ∃ (l : E), Filter.Tendsto (fun (x : ι) => X x ω) (nhdsWithin x (Set.Iio x)) (nhds l)
        theorem ProbabilityTheory.locally_isCadlag_iff {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [Zero E] {𝓕 : MeasureTheory.Filtration ι } {X : ιΩE} [TopologicalSpace E] [𝓕.HasUsualConditions P] :
        Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω
        theorem ProbabilityTheory.locally_isCadlag_iff_locally_ae {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [ConditionallyCompleteLinearOrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [SecondCountableTopology ι] [DenselyOrdered ι] [NoMaxOrder ι] [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure P] {𝓕 : MeasureTheory.Filtration ι } [𝓕.HasUsualConditions P] {X : ιΩE} :
        Locally (fun (X : ιΩE) => ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) 𝓕 X P Locally (fun (X : ιΩE) => ∀ᵐ (ω : Ω) P, IsCadlag fun (x : ι) => X x ω) 𝓕 X P
        theorem ProbabilityTheory.rightContinuous_indicator {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [NormedAddCommGroup E] {X : ιΩE} [TopologicalSpace ι] (hC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) (s : Set Ω) (ω : Ω) :
        Function.RightContinuous fun (t : ι) => s.indicator (X t) ω
        theorem ProbabilityTheory.stronglyAdapted_indicator {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [NormedAddCommGroup E] {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] (hX : MeasureTheory.StronglyAdapted 𝓕 X) {τ : ΩWithTop ι} ( : MeasureTheory.IsStoppingTime 𝓕 τ) :
        MeasureTheory.StronglyAdapted 𝓕 fun (i : ι) => {ω : Ω | < τ ω}.indicator (X i)
        theorem ProbabilityTheory.progMeasurable_indicator {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} [LinearOrder ι] [NormedAddCommGroup E] {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } [OrderBot ι] [MeasurableSpace ι] (hX : MeasureTheory.ProgMeasurable 𝓕 X) {τ : ΩWithTop ι} ( : MeasureTheory.IsStoppingTime 𝓕 τ) :
        MeasureTheory.ProgMeasurable 𝓕 fun (i : ι) => {ω : Ω | < τ ω}.indicator (X i)

        The class of progressively measurable processes is stable.