Kolmogorov-Chentsov theorem #
theorem
Asymptotics.IsEquivalent.rpow_of_nonneg
{α : Type u_1}
{t u : α → ℝ}
(hu : 0 ≤ u)
{l : Filter α}
(h : IsEquivalent l t u)
{r : ℝ}
 :
IsEquivalent l (t ^ r) (u ^ r)
instance
FiniteExhaustion.instFunLikeNatSet
{α : Type u_1}
{s : Set α}
 :
FunLike (FiniteExhaustion s) ℕ (Set α)
Equations
- FiniteExhaustion.instFunLikeNatSet = { coe := FiniteExhaustion.toFun, coe_injective' := ⋯ }
instance
FiniteExhaustion.instFiniteElemCoeNatSet
{α : Type u_1}
{s : Set α}
{K : FiniteExhaustion s}
{n : ℕ}
 :
Finite ↑(K n)
@[simp]
theorem
FiniteExhaustion.Finite
{α : Type u_1}
{s : Set α}
(K : FiniteExhaustion s)
(n : ℕ)
 :
(K n).Finite
theorem
FiniteExhaustion.subset
{α : Type u_1}
{s : Set α}
(K : FiniteExhaustion s)
{m n : ℕ}
(h : m ≤ n)
 :
Equations
Instances For
def
FiniteExhaustion.prod
{α : Type u_1}
{s : Set α}
(K : FiniteExhaustion s)
{β : Type u_2}
{t : Set β}
(K' : FiniteExhaustion t)
 :
FiniteExhaustion (s ×ˢ t)
Equations
Instances For
theorem
FiniteExhaustion.prod_apply
{α : Type u_1}
{s : Set α}
(K : FiniteExhaustion s)
{β : Type u_2}
{t : Set β}
(K' : FiniteExhaustion t)
(n : ℕ)
 :
theorem
ProbabilityTheory.lintegral_div_edist_le_sum_integral_edist_le
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{X : T → Ω → E}
{p q : ℝ}
{M β : NNReal}
{P : MeasureTheory.Measure Ω}
{U : Set T}
[PseudoEMetricSpace T]
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
(hT : EMetric.diam U < ⊤)
(hX : IsAEKolmogorovProcess X P p q M)
(hβ : 0 < β)
{J : Set T}
[Countable ↑J]
(hJU : J ⊆ U)
 :
noncomputable def
ProbabilityTheory.constL
(T : Type u_4)
[PseudoEMetricSpace T]
(c : ENNReal)
(d p q β : ℝ)
(U : Set T)
 :
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.finite_kolmogorov_chentsov
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{X : T → Ω → E}
{c : ENNReal}
{d p q : ℝ}
{M β : NNReal}
{P : MeasureTheory.Measure Ω}
{U : Set T}
[PseudoEMetricSpace T]
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
(hT : HasBoundedInternalCoveringNumber U c d)
(hX : IsAEKolmogorovProcess X P p q M)
(hd_pos : 0 < d)
(hdq_lt : d < q)
(hβ_pos : 0 < β)
(T' : Set T)
[hT' : Finite ↑T']
(hT'U : T' ⊆ U)
 :
theorem
ProbabilityTheory.countable_kolmogorov_chentsov
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{X : T → Ω → E}
{c : ENNReal}
{d p q : ℝ}
{M β : NNReal}
{P : MeasureTheory.Measure Ω}
{U : Set T}
[PseudoEMetricSpace T]
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
(hT : HasBoundedInternalCoveringNumber U c d)
(hX : IsAEKolmogorovProcess X P p q M)
(hd_pos : 0 < d)
(hdq_lt : d < q)
(hβ_pos : 0 < β)
(T' : Set T)
[Countable ↑T']
(hT'U : T' ⊆ U)
 :
theorem
ProbabilityTheory.IsKolmogorovProcess.ae_iSup_rpow_edist_div_lt_top
{T : Type u_1}
{Ω : Type u_2}
{E : Type u_3}
{mΩ : MeasurableSpace Ω}
{X : T → Ω → E}
{c : ENNReal}
{d p q : ℝ}
{M β : NNReal}
{P : MeasureTheory.Measure Ω}
{U : Set T}
[PseudoEMetricSpace T]
[PseudoEMetricSpace E]
[MeasurableSpace E]
[BorelSpace E]
(hT : HasBoundedInternalCoveringNumber U c d)
(hX : IsKolmogorovProcess X P p q M)
(hc : c ≠ ⊤)
(hd_pos : 0 < d)
(hdq_lt : d < q)
(hβ_pos : 0 < β)
(hβ_lt : ↑β < (q - d) / p)
{T' : Set T}
(hT' : T'.Countable)
(hT'U : T' ⊆ U)
 :