Documentation

BrownianMotion.Continuity.KolmogorovChentsovInequality

Kolmogorov-Chentsov theorem #

theorem Asymptotics.IsEquivalent.rpow_of_nonneg {α : Type u_1} {t u : α} (hu : 0 u) {l : Filter α} (h : IsEquivalent l t u) {r : } :
IsEquivalent l (t ^ r) (u ^ r)
theorem Set.iUnion_le_nat :
⋃ (n : ), {i : | i n} = univ
structure FiniteExhaustion {α : Type u_1} (s : Set α) :
Type u_1
Instances For
    instance FiniteExhaustion.instFiniteElemCoeNatSet {α : Type u_1} {s : Set α} {K : FiniteExhaustion s} {n : } :
    Finite (K n)
    @[simp]
    theorem FiniteExhaustion.toFun_eq_coe {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) :
    K.toFun = K
    theorem FiniteExhaustion.Finite {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) (n : ) :
    (K n).Finite
    theorem FiniteExhaustion.subset_succ {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) (n : ) :
    K n K (n + 1)
    theorem FiniteExhaustion.subset {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) {m n : } (h : m n) :
    K m K n
    theorem FiniteExhaustion.iUnion_eq {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) :
    ⋃ (n : ), K n = s
    theorem FiniteExhaustion.subset' {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) (n : ) :
    K n s
    noncomputable def FiniteExhaustion.choice {α : Type u_2} (s : Set α) [Countable s] :
    Equations
    Instances For
      def FiniteExhaustion.prod {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) {β : Type u_2} {t : Set β} (K' : FiniteExhaustion t) :
      Equations
      • K.prod K' = { toFun := fun (n : ) => K n ×ˢ K' n, Finite' := , subset_succ' := , iUnion_eq' := }
      Instances For
        theorem FiniteExhaustion.prod_apply {α : Type u_1} {s : Set α} (K : FiniteExhaustion s) {β : Type u_2} {t : Set β} (K' : FiniteExhaustion t) (n : ) :
        (K.prod K') n = K n ×ˢ K' n
        theorem measure_add_ge_le_add_measure_ge {Ω : Type u_1} {x✝ : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {f g : ΩENNReal} {x u : ENNReal} (hu : u x) :
        P {ω : Ω | x f ω + g ω} P {ω : Ω | u f ω} + P {ω : Ω | x - u g ω}
        theorem measure_add_ge_le_add_measure_ge_half {Ω : Type u_1} {x✝ : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {f g : ΩENNReal} {x : ENNReal} :
        P {ω : Ω | x f ω + g ω} P {ω : Ω | x / 2 f ω} + P {ω : Ω | x / 2 g ω}
        theorem ProbabilityTheory.lintegral_div_edist_le_sum_integral_edist_le {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] (hT : EMetric.diam U < ) (hX : IsAEKolmogorovProcess X P p q M) ( : 0 < β) {J : Set T} [Countable J] (hJU : J U) :
        ∫⁻ (ω : Ω), ⨆ (s : J), ⨆ (t : J), edist (X (↑s) ω) (X (↑t) ω) ^ p / edist s t ^ (β * p) P ∑' (k : ), 2 ^ (k * β * p) * ∫⁻ (ω : Ω), ⨆ (s : J), ⨆ (t : { t : J // edist s t 2 * 2⁻¹ ^ k * (EMetric.diam U + 1) }), edist (X (↑s) ω) (X (↑t) ω) ^ p P
        noncomputable def ProbabilityTheory.constL (T : Type u_4) [PseudoEMetricSpace T] (c : ENNReal) (d p q β : ) (U : Set T) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem ProbabilityTheory.constL_lt_top {T : Type u_1} {c : ENNReal} {d p q : } {β : NNReal} {U : Set T} [PseudoEMetricSpace T] (hT : EMetric.diam U < ) (hc : c ) (hd_pos : 0 < d) (hp_pos : 0 < p) (hdq_lt : d < q) (hβ_lt : β < (q - d) / p) :
          constL T c d p q (↑β) U <
          theorem ProbabilityTheory.finite_kolmogorov_chentsov {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hX : IsAEKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (T' : Set T) [hT' : Finite T'] (hT'U : T' U) :
          ∫⁻ (ω : Ω), ⨆ (s : T'), ⨆ (t : T'), edist (X (↑s) ω) (X (↑t) ω) ^ p / edist s t ^ (β * p) P M * constL T c d p q (↑β) U
          theorem ProbabilityTheory.countable_kolmogorov_chentsov {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hX : IsAEKolmogorovProcess X P p q M) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (T' : Set T) [Countable T'] (hT'U : T' U) :
          ∫⁻ (ω : Ω), ⨆ (s : T'), ⨆ (t : T'), edist (X (↑s) ω) (X (↑t) ω) ^ p / edist s t ^ (β * p) P M * constL T c d p q (↑β) U
          theorem ProbabilityTheory.IsKolmogorovProcess.ae_iSup_rpow_edist_div_lt_top {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {X : TΩE} {c : ENNReal} {d p q : } {M β : NNReal} {P : MeasureTheory.Measure Ω} {U : Set T} [PseudoEMetricSpace T] [PseudoEMetricSpace E] [MeasurableSpace E] [BorelSpace E] (hT : HasBoundedInternalCoveringNumber U c d) (hX : IsKolmogorovProcess X P p q M) (hc : c ) (hd_pos : 0 < d) (hdq_lt : d < q) (hβ_pos : 0 < β) (hβ_lt : β < (q - d) / p) {T' : Set T} (hT' : T'.Countable) (hT'U : T' U) :
          ∀ᵐ (ω : Ω) P, ⨆ (s : T'), ⨆ (t : T'), edist (X (↑s) ω) (X (↑t) ω) ^ p / edist s t ^ (β * p) <