Documentation

BrownianMotion.Gaussian.StochasticProcesses

theorem modification_of_indistinguishable {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : TΩE} (h : ∀ᵐ (ω : Ω) P, ∀ (t : T), X t ω = Y t ω) (t : T) :
X t =ᵐ[P] Y t
theorem indistinguishable_of_modification {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : TΩE} [TopologicalSpace E] [TopologicalSpace T] [TopologicalSpace.SeparableSpace T] [T2Space E] (hX : ∀ᵐ (ω : Ω) P, Continuous fun (t : T) => X t ω) (hY : ∀ᵐ (ω : Ω) P, Continuous fun (t : T) => Y t ω) (h : ∀ (t : T), X t =ᵐ[P] Y t) :
∀ᵐ (ω : Ω) P, ∀ (t : T), X t ω = Y t ω
theorem subset_closure_dense_inter {α : Type u_4} [TopologicalSpace α] {T' U : Set α} (hT'_dense : Dense T') (hU : IsOpen U) :
U closure (T' U)
theorem indistinguishable_of_modification_on {T : Type u_1} {Ω : Type u_2} {E : Type u_3} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X Y : TΩE} [TopologicalSpace E] [TopologicalSpace T] [TopologicalSpace.SeparableSpace T] [T2Space E] {U : Set T} (hU : IsOpen U) (hX : ∀ᵐ (ω : Ω) P, ContinuousOn (fun (x : T) => X x ω) U) (hY : ∀ᵐ (ω : Ω) P, ContinuousOn (fun (x : T) => Y x ω) U) (h : tU, X t =ᵐ[P] Y t) :
∀ᵐ (ω : Ω) P, tU, X t ω = Y t ω