Documentation

TestingLowerBounds.FDiv.CompProd.EqTopIff

f-Divergences of composition products: infinite values #

We determine when fDiv f (μ ⊗ₘ κ) (ν ⊗ₘ κ) is infinite, with special attention given to the case ν = μ, which is linked to the conditional divergence. Every measure and kernel are supposed finite.

Recall fDiv_ne_top_iff': fDiv f μ ν ≠ ⊤ ↔ derivAtTop f = ⊤ → (Integrable (fun x ↦ f ((∂μ/∂ν) x).toReal) ν ∧ μ ≪ ν)

If derivAtTop f ≠ ⊤ then fDiv f μ ν ≠ ⊤.

If derivAtTop f = ⊤, then fDiv f (μ ⊗ₘ κ) (ν ⊗ₘ κ) = ⊤ unless

theorem ProbabilityTheory.fDiv_compProd_ne_top_iff'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) derivAtTop f = (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a) ν (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)
theorem ProbabilityTheory.fDiv_compProd_ne_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) derivAtTop f = (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) ν (μ.compProd κ).AbsolutelyContinuous (ν.compProd η)
theorem ProbabilityTheory.fDiv_compProd_eq_top_iff'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) = derivAtTop f = ((∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, x)).toReal) (η a))MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a) νμ.AbsolutelyContinuous ν¬(μ.compProd κ).AbsolutelyContinuous (μ.compProd η))
theorem ProbabilityTheory.fDiv_compProd_eq_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) = derivAtTop f = ((∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, x)).toReal) (η a))MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) νμ.AbsolutelyContinuous ν¬(μ.compProd κ).AbsolutelyContinuous (μ.compProd η))
theorem ProbabilityTheory.fDiv_compProd_right_ne_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (μ.compProd η) derivAtTop f = (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (μ.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) μ (μ.compProd κ).AbsolutelyContinuous (μ.compProd η)
theorem ProbabilityTheory.fDiv_compProd_right_eq_top_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (μ.compProd η) = derivAtTop f = ((∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (μ.compProd η) (a, x)).toReal) (η a))MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) μ¬(μ.compProd κ).AbsolutelyContinuous (μ.compProd η))
theorem ProbabilityTheory.fDiv_compProd_left_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsMarkovKernel κ] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd κ) derivAtTop f = MeasureTheory.Integrable (fun (a : α) => f (μ.rnDeriv ν a).toReal) ν μ.AbsolutelyContinuous ν
theorem ProbabilityTheory.fDiv_compProd_left_eq_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsMarkovKernel κ] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd κ) = derivAtTop f = (MeasureTheory.Integrable (fun (a : α) => f (μ.rnDeriv ν a).toReal) ν¬μ.AbsolutelyContinuous ν)
theorem ProbabilityTheory.fDiv_compProd_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) x).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) b).toRealη a) ν (derivAtTop f = μ.AbsolutelyContinuous ν ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
theorem ProbabilityTheory.fDiv_compProd_eq_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η) = (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) x).toReal) (η a))MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) b).toRealη a) νderivAtTop f = (μ.AbsolutelyContinuous ν¬∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
theorem ProbabilityTheory.fDiv_compProd_right_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (μ.compProd η) (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ (derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
theorem ProbabilityTheory.fDiv_compProd_right_eq_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [∀ (a : α), NeZero (κ a)] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (μ.compProd η) = (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a))MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μderivAtTop f = ¬∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)
theorem ProbabilityTheory.f_rnDeriv_ae_le_integral {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) (hκη : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
(fun (a : α) => f (μ.rnDeriv ν a * (κ a) Set.univ).toReal) ≤ᵐ[ν] fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a
theorem ProbabilityTheory.integrable_f_rnDeriv_mul_kernel {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) (hκη : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
MeasureTheory.Integrable (fun (a : α) => f (μ.rnDeriv ν a * (κ a) Set.univ).toReal) ν
theorem ProbabilityTheory.integrable_f_rnDeriv_mul_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (h_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) :
MeasureTheory.Integrable (fun (a : α) => f (μ.rnDeriv ν a * ((η.withDensity (κ.rnDeriv η)) a) Set.univ).toReal) ν
theorem ProbabilityTheory.f_rnDeriv_le_add {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hf_cvx : ConvexOn (Set.Ici 0) f) (h_deriv : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
∀ᵐ (a : α) ∂ν, f (μ.rnDeriv ν a).toReal f (μ.rnDeriv ν a * ((η.withDensity (κ.rnDeriv η)) a) Set.univ).toReal + (derivAtTop f).toReal * (μ.rnDeriv ν a).toReal * (((κ.singularPart η) a) Set.univ).toReal
theorem ProbabilityTheory.integrable_f_rnDeriv_of_integrable_compProd' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_int : MeasureTheory.Integrable (fun (p : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) p).toReal) (ν.compProd η)) (h_deriv : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν