Documentation

TestingLowerBounds.FDiv.IntegralRnDerivSingularPart

f-Divergences #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem ProbabilityTheory.lintegral_measure_prod_mk_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αSet βENNReal} (hf : ∀ (a : α), f a = 0) {s : Set α} (hs : MeasurableSet s) (t : Set β) :
∫⁻ (a : α), f a (Prod.mk a ⁻¹' s ×ˢ t)μ = ∫⁻ (a : α) in s, f a tμ
theorem ProbabilityTheory.setLIntegral_rnDeriv_mul_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α) in s, μ.rnDeriv ν a * ((η.withDensity (κ.rnDeriv η)) a) tν = ((ν.compProd η).withDensity ((μ.compProd κ).rnDeriv (ν.compProd η))) (s ×ˢ t)
theorem ProbabilityTheory.lintegral_rnDeriv_mul_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α), μ.rnDeriv ν a * ((η.withDensity (κ.rnDeriv η)) a) tν = ((ν.compProd η).withDensity ((μ.compProd κ).rnDeriv (ν.compProd η))) (Set.univ ×ˢ t)
theorem ProbabilityTheory.setLIntegral_rnDeriv_mul_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α) in s, μ.rnDeriv ν a * ((κ a).singularPart (η a)) tν = (((ν.withDensity (μ.rnDeriv ν)).compProd κ).singularPart (ν.compProd η)) (s ×ˢ t)
theorem ProbabilityTheory.lintegral_rnDeriv_mul_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α), μ.rnDeriv ν a * ((κ a).singularPart (η a)) tν = (((ν.withDensity (μ.rnDeriv ν)).compProd κ).singularPart (ν.compProd η)) (Set.univ ×ˢ t)
theorem ProbabilityTheory.setLIntegral_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α) in s, ((η.withDensity (κ.rnDeriv η)) a) tμ = ((μ.compProd η).withDensity ((μ.compProd κ).rnDeriv (μ.compProd η))) (s ×ˢ t)
theorem ProbabilityTheory.setLIntegral_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫⁻ (a : α) in s, ((κ a).singularPart (η a)) tμ = ((μ.compProd κ).singularPart (μ.compProd η)) (s ×ˢ t)
theorem ProbabilityTheory.lintegral_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set β} (hs : MeasurableSet s) :
∫⁻ (a : α), ((η.withDensity (κ.rnDeriv η)) a) sμ = ((μ.compProd η).withDensity ((μ.compProd κ).rnDeriv (μ.compProd η))) (Set.univ ×ˢ s)
theorem ProbabilityTheory.lintegral_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set β} (hs : MeasurableSet s) :
∫⁻ (a : α), ((κ a).singularPart (η a)) sμ = ((μ.compProd κ).singularPart (μ.compProd η)) (Set.univ ×ˢ s)
theorem ProbabilityTheory.setIntegral_rnDeriv_mul_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫ (a : α) in s, (μ.rnDeriv ν a).toReal * (((η.withDensity (κ.rnDeriv η)) a) t).toRealν = (((ν.compProd η).withDensity ((μ.compProd κ).rnDeriv (ν.compProd η))) (s ×ˢ t)).toReal
theorem ProbabilityTheory.integral_rnDeriv_mul_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {t : Set β} (ht : MeasurableSet t) :
∫ (a : α), (μ.rnDeriv ν a).toReal * (((η.withDensity (κ.rnDeriv η)) a) t).toRealν = (((ν.compProd η).withDensity ((μ.compProd κ).rnDeriv (ν.compProd η))) (Set.univ ×ˢ t)).toReal
theorem ProbabilityTheory.setIntegral_rnDeriv_mul_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫ (a : α) in s, (μ.rnDeriv ν a).toReal * (((κ a).singularPart (η a)) t).toRealν = ((((ν.withDensity (μ.rnDeriv ν)).compProd κ).singularPart (ν.compProd η)) (s ×ˢ t)).toReal
theorem ProbabilityTheory.integral_rnDeriv_mul_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {t : Set β} (ht : MeasurableSet t) :
∫ (a : α), (μ.rnDeriv ν a).toReal * (((κ a).singularPart (η a)) t).toRealν = ((((ν.withDensity (μ.rnDeriv ν)).compProd κ).singularPart (ν.compProd η)) (Set.univ ×ˢ t)).toReal
theorem ProbabilityTheory.setIntegral_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set α} (hs : MeasurableSet s) {t : Set β} (ht : MeasurableSet t) :
∫ (a : α) in s, (((κ a).singularPart (η a)) t).toRealμ = (((μ.compProd κ).singularPart (μ.compProd η)) (s ×ˢ t)).toReal
theorem ProbabilityTheory.integral_singularPart {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {s : Set β} (hs : MeasurableSet s) :
∫ (a : α), (((κ a).singularPart (η a)) s).toRealμ = (((μ.compProd κ).singularPart (μ.compProd η)) (Set.univ ×ˢ s)).toReal
theorem ProbabilityTheory.Integrable.Kernel {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel κ] [MeasureTheory.IsFiniteMeasure μ] (s : Set β) (hs : MeasurableSet s) :
MeasureTheory.Integrable (fun (x : α) => ((κ x) s).toReal) μ
theorem ProbabilityTheory.Measure.rnDeriv_measure_compProd_Kernel_withDensity {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd (η.withDensity (κ.rnDeriv η))).rnDeriv (ν.compProd η) =ᵐ[ν.compProd η] (μ.compProd κ).rnDeriv (ν.compProd η)