f-Divergences #
Main definitions #
FooBar
Main statements #
fooBar_unique
Notation #
Implementation details #
theorem
ProbabilityTheory.lintegral_measure_prod_mk_left
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → Set β → ENNReal}
(hf : ∀ (a : α), f a ∅ = 0)
{s : Set α}
(hs : MeasurableSet s)
(t : Set β)
:
theorem
ProbabilityTheory.setLIntegral_rnDeriv_mul_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.lintegral_rnDeriv_mul_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.setLIntegral_rnDeriv_mul_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.lintegral_rnDeriv_mul_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.setLIntegral_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.setLIntegral_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.lintegral_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set β}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.lintegral_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set β}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.integrable_rnDeriv_mul_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (μ.rnDeriv ν x).toReal * (((η.withDensity (κ.rnDeriv η)) x) Set.univ).toReal) ν
theorem
ProbabilityTheory.integrable_rnDeriv_mul_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (μ.rnDeriv ν x).toReal * (((κ x).singularPart (η x)) Set.univ).toReal) ν
theorem
ProbabilityTheory.integrable_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
{η : ProbabilityTheory.Kernel α β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
MeasureTheory.Integrable (fun (x : α) => (((κ x).singularPart (η x)) Set.univ).toReal) μ
theorem
ProbabilityTheory.setIntegral_rnDeriv_mul_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.integral_rnDeriv_mul_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.setIntegral_rnDeriv_mul_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.integral_rnDeriv_mul_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.setIntegral_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set α}
(hs : MeasurableSet s)
{t : Set β}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.integral_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{s : Set β}
(hs : MeasurableSet s)
:
theorem
ProbabilityTheory.Integrable.Kernel
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α β}
[ProbabilityTheory.IsFiniteKernel κ]
[MeasureTheory.IsFiniteMeasure μ]
(s : Set β)
(hs : MeasurableSet s)
:
MeasureTheory.Integrable (fun (x : α) => ((κ x) s).toReal) μ
theorem
ProbabilityTheory.Measure.rnDeriv_measure_compProd_Kernel_withDensity
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
(κ : ProbabilityTheory.Kernel α β)
(η : ProbabilityTheory.Kernel α β)
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
: