DerivAtTop #
Main definitions #
FooBar
Main statements #
fooBar_unique
Notation #
Implementation details #
theorem
EReal.tendsto_of_monotone
{ι : Type u_1}
[Preorder ι]
{f : ι → EReal}
(hf : Monotone f)
:
∃ (y : EReal), Filter.Tendsto f Filter.atTop (nhds y)
theorem
EReal.tendsto_of_monotoneOn
{ι : Type u_1}
[SemilatticeSup ι]
[Nonempty ι]
{x : ι}
{f : ι → EReal}
(hf : MonotoneOn f (Set.Ici x))
:
∃ (y : EReal), Filter.Tendsto f Filter.atTop (nhds y)
theorem
MonotoneOn.monotone_ite_bot
{f : ℝ → ℝ}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
:
Monotone fun (x : ℝ) => if 1 ≤ x then ↑(rightDeriv f x) else ⊥
Limsup of the right derivative at infinity.
Equations
- derivAtTop f = Filter.limsup (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop
Instances For
theorem
derivAtTop_congr
{f : ℝ → ℝ}
{g : ℝ → ℝ}
(h : f =ᶠ[Filter.atTop] g)
:
derivAtTop f = derivAtTop g
theorem
derivAtTop_congr_nonneg
{f : ℝ → ℝ}
{g : ℝ → ℝ}
(h : ∀ (x : ℝ), 0 ≤ x → f x = g x)
:
derivAtTop f = derivAtTop g
theorem
derivAtTop_eq_limsup_extendBotLtOne
{f : ℝ → ℝ}
:
derivAtTop f = Filter.limsup (fun (x : ℝ) => if 1 ≤ x then ↑(rightDeriv f x) else ⊥) Filter.atTop
theorem
tendsto_extendBotLtOne_rightDeriv_iff
{f : ℝ → ℝ}
{y : EReal}
:
Filter.Tendsto (fun (x : ℝ) => if 1 ≤ x then ↑(rightDeriv f x) else ⊥) Filter.atTop (nhds y) ↔ Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds y)
theorem
derivAtTop_of_tendsto
{f : ℝ → ℝ}
{y : EReal}
(h : Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds y))
:
derivAtTop f = y
theorem
derivAtTop_of_tendsto_nhds
{f : ℝ → ℝ}
{y : ℝ}
(h : Filter.Tendsto (rightDeriv f) Filter.atTop (nhds y))
:
derivAtTop f = ↑y
theorem
derivAtTop_of_tendsto_atTop
{f : ℝ → ℝ}
(h : Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop)
:
derivAtTop f = ⊤
theorem
MonotoneOn.tendsto_derivAtTop
{f : ℝ → ℝ}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
:
Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds (derivAtTop f))
theorem
ConvexOn.tendsto_derivAtTop
{f : ℝ → ℝ}
(hf : ConvexOn ℝ (Set.Ici 0) f)
:
Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds (derivAtTop f))
theorem
MonotoneOn.derivAtTop_eq_iff
{f : ℝ → ℝ}
{y : EReal}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
:
derivAtTop f = y ↔ Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds y)
theorem
ConvexOn.derivAtTop_eq_iff
{f : ℝ → ℝ}
{y : EReal}
(hf : ConvexOn ℝ (Set.Ici 0) f)
:
derivAtTop f = y ↔ Filter.Tendsto (fun (x : ℝ) => ↑(rightDeriv f x)) Filter.atTop (nhds y)
theorem
MonotoneOn.derivAtTop_eq_top_iff
{f : ℝ → ℝ}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
:
derivAtTop f = ⊤ ↔ Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop
theorem
ConvexOn.derivAtTop_eq_top_iff
{f : ℝ → ℝ}
(hf : ConvexOn ℝ (Set.Ici 0) f)
:
derivAtTop f = ⊤ ↔ Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop
theorem
MonotoneOn.derivAtTop_ne_bot
{f : ℝ → ℝ}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
:
derivAtTop f ≠ ⊥
theorem
MonotoneOn.tendsto_toReal_derivAtTop
{f : ℝ → ℝ}
(hf : MonotoneOn (rightDeriv f) (Set.Ioi 0))
(h_top : derivAtTop f ≠ ⊤)
:
Filter.Tendsto (rightDeriv f) Filter.atTop (nhds (derivAtTop f).toReal)
theorem
ConvexOn.tendsto_toReal_derivAtTop
{f : ℝ → ℝ}
(hf : ConvexOn ℝ (Set.Ici 0) f)
(h_top : derivAtTop f ≠ ⊤)
:
Filter.Tendsto (rightDeriv f) Filter.atTop (nhds (derivAtTop f).toReal)
theorem
derivAtTop_add'
{f : ℝ → ℝ}
{g : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(hg_cvx : ConvexOn ℝ (Set.Ici 0) g)
:
derivAtTop (f + g) = derivAtTop f + derivAtTop g
theorem
derivAtTop_add
{f : ℝ → ℝ}
{g : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(hg_cvx : ConvexOn ℝ (Set.Ici 0) g)
:
(derivAtTop fun (x : ℝ) => f x + g x) = derivAtTop f + derivAtTop g
theorem
derivAtTop_add_const
{f : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(c : ℝ)
:
(derivAtTop fun (x : ℝ) => f x + c) = derivAtTop f
theorem
derivAtTop_const_add
{f : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(c : ℝ)
:
(derivAtTop fun (x : ℝ) => c + f x) = derivAtTop f
theorem
derivAtTop_sub_const
{f : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(c : ℝ)
:
(derivAtTop fun (x : ℝ) => f x - c) = derivAtTop f
theorem
derivAtTop_const_mul
{f : ℝ → ℝ}
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
{c : ℝ}
(hc : c ≠ 0)
:
(derivAtTop fun (x : ℝ) => c * f x) = ↑c * derivAtTop f
theorem
rightDeriv_le_toReal_derivAtTop
{f : ℝ → ℝ}
{x : ℝ}
(h_cvx : ConvexOn ℝ (Set.Ici 0) f)
(h : derivAtTop f ≠ ⊤)
(hx : 0 < x)
:
rightDeriv f x ≤ (derivAtTop f).toReal
theorem
rightDeriv_le_derivAtTop
{f : ℝ → ℝ}
{x : ℝ}
(h_cvx : ConvexOn ℝ (Set.Ici 0) f)
(hx : 0 < x)
:
↑(rightDeriv f x) ≤ derivAtTop f