Documentation

TestingLowerBounds.DerivAtTop

DerivAtTop #

Main definitions #

Main statements #

Notation #

Implementation details #

theorem EReal.tendsto_of_monotone {ι : Type u_1} [Preorder ι] {f : ιEReal} (hf : Monotone f) :
∃ (y : EReal), Filter.Tendsto f Filter.atTop (nhds y)
theorem EReal.tendsto_of_monotoneOn {ι : Type u_1} [SemilatticeSup ι] [Nonempty ι] {x : ι} {f : ιEReal} (hf : MonotoneOn f (Set.Ici x)) :
∃ (y : EReal), Filter.Tendsto f Filter.atTop (nhds y)
theorem ite_bot_ae_eq_atTop (f : EReal) :
(fun (x : ) => if 1 x then f x else ) =ᶠ[Filter.atTop] f
theorem MonotoneOn.monotone_ite_bot {f : } (hf : MonotoneOn (rightDeriv f) (Set.Ioi 0)) :
Monotone fun (x : ) => if 1 x then (rightDeriv f x) else
noncomputable def derivAtTop (f : ) :

Limsup of the right derivative at infinity.

Equations
Instances For
    theorem derivAtTop_congr {f : } {g : } (h : f =ᶠ[Filter.atTop] g) :
    theorem derivAtTop_congr_nonneg {f : } {g : } (h : ∀ (x : ), 0 xf x = g x) :
    theorem derivAtTop_eq_limsup_extendBotLtOne {f : } :
    derivAtTop f = Filter.limsup (fun (x : ) => if 1 x then (rightDeriv f x) else ) Filter.atTop
    theorem tendsto_extendBotLtOne_rightDeriv_iff {f : } {y : EReal} :
    Filter.Tendsto (fun (x : ) => if 1 x then (rightDeriv f x) else ) Filter.atTop (nhds y) Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds y)
    theorem derivAtTop_of_tendsto {f : } {y : EReal} (h : Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds y)) :
    theorem derivAtTop_of_tendsto_nhds {f : } {y : } (h : Filter.Tendsto (rightDeriv f) Filter.atTop (nhds y)) :
    derivAtTop f = y
    theorem derivAtTop_of_tendsto_atTop {f : } (h : Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop) :
    @[simp]
    @[simp]
    theorem derivAtTop_const (c : ) :
    (derivAtTop fun (x : ) => c) = 0
    @[simp]
    theorem derivAtTop_id :
    @[simp]
    theorem derivAtTop_id' :
    (derivAtTop fun (x : ) => x) = 1
    theorem MonotoneOn.tendsto_derivAtTop {f : } (hf : MonotoneOn (rightDeriv f) (Set.Ioi 0)) :
    Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds (derivAtTop f))
    theorem ConvexOn.tendsto_derivAtTop {f : } (hf : ConvexOn (Set.Ici 0) f) :
    Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds (derivAtTop f))
    theorem MonotoneOn.derivAtTop_eq_iff {f : } {y : EReal} (hf : MonotoneOn (rightDeriv f) (Set.Ioi 0)) :
    derivAtTop f = y Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds y)
    theorem ConvexOn.derivAtTop_eq_iff {f : } {y : EReal} (hf : ConvexOn (Set.Ici 0) f) :
    derivAtTop f = y Filter.Tendsto (fun (x : ) => (rightDeriv f x)) Filter.atTop (nhds y)
    theorem MonotoneOn.derivAtTop_eq_top_iff {f : } (hf : MonotoneOn (rightDeriv f) (Set.Ioi 0)) :
    derivAtTop f = Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop
    theorem ConvexOn.derivAtTop_eq_top_iff {f : } (hf : ConvexOn (Set.Ici 0) f) :
    derivAtTop f = Filter.Tendsto (rightDeriv f) Filter.atTop Filter.atTop
    theorem MonotoneOn.tendsto_toReal_derivAtTop {f : } (hf : MonotoneOn (rightDeriv f) (Set.Ioi 0)) (h_top : derivAtTop f ) :
    Filter.Tendsto (rightDeriv f) Filter.atTop (nhds (derivAtTop f).toReal)
    theorem ConvexOn.tendsto_toReal_derivAtTop {f : } (hf : ConvexOn (Set.Ici 0) f) (h_top : derivAtTop f ) :
    Filter.Tendsto (rightDeriv f) Filter.atTop (nhds (derivAtTop f).toReal)
    theorem derivAtTop_add' {f : } {g : } (hf_cvx : ConvexOn (Set.Ici 0) f) (hg_cvx : ConvexOn (Set.Ici 0) g) :
    theorem derivAtTop_add {f : } {g : } (hf_cvx : ConvexOn (Set.Ici 0) f) (hg_cvx : ConvexOn (Set.Ici 0) g) :
    (derivAtTop fun (x : ) => f x + g x) = derivAtTop f + derivAtTop g
    theorem derivAtTop_add_const {f : } (hf_cvx : ConvexOn (Set.Ici 0) f) (c : ) :
    (derivAtTop fun (x : ) => f x + c) = derivAtTop f
    theorem derivAtTop_const_add {f : } (hf_cvx : ConvexOn (Set.Ici 0) f) (c : ) :
    (derivAtTop fun (x : ) => c + f x) = derivAtTop f
    theorem derivAtTop_sub_const {f : } (hf_cvx : ConvexOn (Set.Ici 0) f) (c : ) :
    (derivAtTop fun (x : ) => f x - c) = derivAtTop f
    theorem derivAtTop_const_mul {f : } (hf_cvx : ConvexOn (Set.Ici 0) f) {c : } (hc : c 0) :
    (derivAtTop fun (x : ) => c * f x) = c * derivAtTop f
    theorem slope_le_rightDeriv {f : } (h_cvx : ConvexOn (Set.Ici 0) f) {x : } {y : } (hx : 0 x) (hxy : x < y) :
    (f y - f x) / (y - x) rightDeriv f y
    theorem rightDeriv_le_toReal_derivAtTop {f : } {x : } (h_cvx : ConvexOn (Set.Ici 0) f) (h : derivAtTop f ) (hx : 0 < x) :
    rightDeriv f x (derivAtTop f).toReal
    theorem rightDeriv_le_derivAtTop {f : } {x : } (h_cvx : ConvexOn (Set.Ici 0) f) (hx : 0 < x) :
    theorem slope_le_derivAtTop {f : } (h_cvx : ConvexOn (Set.Ici 0) f) (h : derivAtTop f ) {x : } {y : } (hx : 0 x) (hxy : x < y) :
    (f y - f x) / (y - x) (derivAtTop f).toReal
    theorem le_add_derivAtTop {f : } (h_cvx : ConvexOn (Set.Ici 0) f) (h : derivAtTop f ) {x : } {y : } (hy : 0 y) (hyx : y x) :
    f x f y + (derivAtTop f).toReal * (x - y)
    theorem le_add_derivAtTop'' {f : } (h_cvx : ConvexOn (Set.Ici 0) f) (h : derivAtTop f ) {x : } {y : } (hx : 0 x) (hy : 0 y) :
    f (x + y) f x + (derivAtTop f).toReal * y
    theorem le_add_derivAtTop' {f : } (h_cvx : ConvexOn (Set.Ici 0) f) (h : derivAtTop f ) {x : } {u : } (hx : 0 x) (hu : 0 u) (hu' : u 1) :
    f x f (x * u) + (derivAtTop f).toReal * x * (1 - u)
    theorem toReal_le_add_derivAtTop {f : } (hf_cvx : ConvexOn (Set.Ici 0) f) {a : ENNReal} {b : ENNReal} (ha : a ) (hb : b ) :
    (f (a + b).toReal) (f a.toReal) + derivAtTop f * b