Documentation

TestingLowerBounds.Divergences.StatInfo.fDivStatInfo

fDiv and StatInfo #

theorem ProbabilityTheory.nnreal_mul_fDiv_statInfoFun {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } {a : NNReal} :
a * ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = ProbabilityTheory.fDiv (fun (x : ) => ProbabilityTheory.statInfoFun (a * β) (a * γ) x) μ ν
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_max_of_nonneg_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : γ β) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (∫ (x : 𝒳), max 0 (γ - β * (μ.rnDeriv ν x).toReal)ν)
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_max_of_nonneg_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : β < γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (∫ (x : 𝒳), max 0 (β * (μ.rnDeriv ν x).toReal - γ)ν) + β * ((μ.singularPart ν) Set.univ)
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_max_of_nonpos_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : β 0) (hγ : γ β) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (∫ (x : 𝒳), max 0 (γ - β * (μ.rnDeriv ν x).toReal)ν) - β * ((μ.singularPart ν) Set.univ)
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_max_of_nonpos_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : β 0) (hγ : β < γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (∫ (x : 𝒳), max 0 (β * (μ.rnDeriv ν x).toReal - γ)ν)
theorem ProbabilityTheory.integral_max_eq_integral_abs {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] :
∫ (x : 𝒳), max 0 (γ - β * (μ.rnDeriv ν x).toReal)ν = 2⁻¹ * (∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν + γ * (ν Set.univ).toReal - β * (μ Set.univ).toReal + β * ((μ.singularPart ν) Set.univ).toReal)

Auxiliary lemma for fDiv_statInfoFun_eq_integral_abs_of_nonneg_of_le and fDiv_statInfoFun_eq_integral_abs_of_nonpos_of_le.

theorem ProbabilityTheory.integral_max_eq_integral_abs' {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] :
∫ (x : 𝒳), max 0 (β * (μ.rnDeriv ν x).toReal - γ)ν = 2⁻¹ * (∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν - γ * (ν Set.univ).toReal + β * (μ Set.univ).toReal - β * ((μ.singularPart ν) Set.univ).toReal)

Auxiliary lemma for fDiv_statInfoFun_eq_integral_abs_of_nonneg_of_gt and fDiv_statInfoFun_eq_integral_abs_of_nonpos_of_gt.

theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_abs_of_nonneg_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : γ β) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = 2⁻¹ * ((∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν) + β * ((μ.singularPart ν) Set.univ) + γ * (ν Set.univ) - β * (μ Set.univ))
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_abs_of_nonneg_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : β < γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = 2⁻¹ * ((∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν) + β * ((μ.singularPart ν) Set.univ) + β * (μ Set.univ) - γ * (ν Set.univ))
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_abs_of_nonpos_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : β 0) (hγ : γ β) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = 2⁻¹ * ((∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν) - β * ((μ.singularPart ν) Set.univ) + γ * (ν Set.univ) - β * (μ Set.univ))
theorem ProbabilityTheory.fDiv_statInfoFun_eq_integral_abs_of_nonpos_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : β 0) (hγ : β < γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = 2⁻¹ * ((∫ (x : 𝒳), |β * (μ.rnDeriv ν x).toReal - γ|ν) - β * ((μ.singularPart ν) Set.univ) + β * (μ Set.univ) - γ * (ν Set.univ))
theorem ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg_of_le {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : 0 γ) (hγβ : γ β) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (ProbabilityTheory.statInfo μ ν (Bool.boolMeasure (ENNReal.ofReal β) (ENNReal.ofReal γ))) + 2⁻¹ * (|β * (μ Set.univ).toReal - γ * (ν Set.univ).toReal| + γ * (ν Set.univ).toReal - β * (μ Set.univ).toReal)
theorem ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg_of_gt {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : 0 γ) (hγβ : β < γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (ProbabilityTheory.statInfo μ ν (Bool.boolMeasure (ENNReal.ofReal β) (ENNReal.ofReal γ))) + 2⁻¹ * (|β * (μ Set.univ).toReal - γ * (ν Set.univ).toReal| + β * (μ Set.univ).toReal - γ * (ν Set.univ).toReal)
theorem ProbabilityTheory.fDiv_statInfoFun_eq_StatInfo_of_nonneg {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {β : } {γ : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hβ : 0 β) (hγ : 0 γ) :
ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun β γ) μ ν = (ProbabilityTheory.statInfo μ ν (Bool.boolMeasure (ENNReal.ofReal β) (ENNReal.ofReal γ))) + 2⁻¹ * (|β * (μ Set.univ).toReal - γ * (ν Set.univ).toReal| + (if γ β then -1 else 1) * (β * (μ Set.univ).toReal - γ * (ν Set.univ).toReal))
theorem ProbabilityTheory.integral_statInfoFun_curvatureMeasure {f : } {t : } (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
∫ (y : ), ProbabilityTheory.statInfoFun 1 y tConvexOn.curvatureMeasure f = f t - f 1 - rightDeriv f 1 * (t - 1)
theorem ProbabilityTheory.integral_statInfoFun_curvatureMeasure' {f : } {t : } (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (hf_one : f 1 = 0) (hfderiv_one : rightDeriv f 1 = 0) :
theorem ProbabilityTheory.lintegral_f_rnDeriv_eq_lintegralfDiv_statInfoFun_of_absolutelyContinuous {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (hf_one : f 1 = 0) (hfderiv_one : rightDeriv f 1 = 0) (h_ac : μ.AbsolutelyContinuous ν) :
∫⁻ (x : 𝒳), ENNReal.ofReal (f (μ.rnDeriv ν x).toReal)ν = ∫⁻ (x : ), (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toENNRealConvexOn.curvatureMeasure f
theorem ProbabilityTheory.fDiv_ne_top_iff_integrable_fDiv_statInfoFun_of_absolutelyContinuous' {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (hf_one : f 1 = 0) (hfderiv_one : rightDeriv f 1 = 0) (h_ac : μ.AbsolutelyContinuous ν) :
theorem ProbabilityTheory.integrable_f_rnDeriv_iff_integrable_fDiv_statInfoFun_of_absolutelyContinuous {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (h_ac : μ.AbsolutelyContinuous ν) :
MeasureTheory.Integrable (fun (x : 𝒳) => f (μ.rnDeriv ν x).toReal) ν MeasureTheory.Integrable (fun (x : ) => (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toReal) (ConvexOn.curvatureMeasure f)
theorem ProbabilityTheory.fDiv_eq_integral_fDiv_statInfoFun_of_absolutelyContinuous' {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (hf_one : f 1 = 0) (hfderiv_one : rightDeriv f 1 = 0) (h_int : MeasureTheory.Integrable (fun (x : 𝒳) => f (μ.rnDeriv ν x).toReal) ν) (h_ac : μ.AbsolutelyContinuous ν) :
theorem ProbabilityTheory.fDiv_eq_integral_fDiv_statInfoFun_of_absolutelyContinuous {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (h_int : MeasureTheory.Integrable (fun (x : 𝒳) => f (μ.rnDeriv ν x).toReal) ν) (h_ac : μ.AbsolutelyContinuous ν) :
ProbabilityTheory.fDiv f μ ν = (∫ (x : ), (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toRealConvexOn.curvatureMeasure f) + (f 1) * (ν Set.univ) + (rightDeriv f 1) * ((μ Set.univ) - (ν Set.univ))
theorem ProbabilityTheory.fDiv_eq_lintegral_fDiv_statInfoFun_of_absolutelyContinuous {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (h_ac : μ.AbsolutelyContinuous ν) :
ProbabilityTheory.fDiv f μ ν = (∫⁻ (x : ), (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toENNRealConvexOn.curvatureMeasure f) + (f 1) * (ν Set.univ) + (rightDeriv f 1) * ((μ Set.univ) - (ν Set.univ))
theorem ProbabilityTheory.lintegral_statInfoFun_one_zero {f : } (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
(∫⁻ (x : ), ENNReal.ofReal (ProbabilityTheory.statInfoFun 1 x 0)ConvexOn.curvatureMeasure f) = (f 0) - (f 1) + (rightDeriv f 1)
theorem ProbabilityTheory.fDiv_eq_lintegral_fDiv_statInfoFun_of_mutuallySingular {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) (h_ms : μ.MutuallySingular ν) :
ProbabilityTheory.fDiv f μ ν = (∫⁻ (x : ), (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toENNRealConvexOn.curvatureMeasure f) + (f 1) * (ν Set.univ) + (rightDeriv f 1) * ((μ Set.univ) - (ν Set.univ))
theorem ProbabilityTheory.fDiv_eq_lintegral_fDiv_statInfoFun {𝒳 : Type u_1} {m𝒳 : MeasurableSpace 𝒳} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f μ ν = (∫⁻ (x : ), (ProbabilityTheory.fDiv (ProbabilityTheory.statInfoFun 1 x) μ ν).toENNRealConvexOn.curvatureMeasure f) + (f 1) * (ν Set.univ) + (rightDeriv f 1) * ((μ Set.univ) - (ν Set.univ))