theorem
StieltjesFunction.measure_Iio
(f : StieltjesFunction)
{l : ℝ}
(hf : Filter.Tendsto (↑f) Filter.atBot (nhds l))
(x : ℝ)
:
f.measure (Set.Iio x) = ENNReal.ofReal (Function.leftLim (↑f) x - l)
theorem
StieltjesFunction.measure_Ioi
(f : StieltjesFunction)
{l : ℝ}
(hf : Filter.Tendsto (↑f) Filter.atTop (nhds l))
(x : ℝ)
:
f.measure (Set.Ioi x) = ENNReal.ofReal (l - ↑f x)
theorem
StieltjesFunction.measure_Ioi_of_tendsto_atTop_atTop
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop)
(x : ℝ)
:
theorem
StieltjesFunction.measure_Ici_of_tendsto_atTop_atTop
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop)
(x : ℝ)
:
theorem
StieltjesFunction.measure_Iic_of_tendsto_atBot_atBot
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot)
(x : ℝ)
:
theorem
StieltjesFunction.measure_Iio_of_tendsto_atBot_atBot
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot)
(x : ℝ)
:
theorem
StieltjesFunction.measure_univ_of_tendsto_atTop_atTop
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop)
:
theorem
StieltjesFunction.measure_univ_of_tendsto_atBot_atBot
(f : StieltjesFunction)
(hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot)
:
@[irreducible]
The curvature measure induced by a convex function. It is defined as the only measure that has the right derivative of the function as a CDF. For nonconvex functions it is defined as the zero measure.
Equations
Instances For
theorem
ConvexOn.curvatureMeasure_def
(f : ℝ → ℝ)
:
ConvexOn.curvatureMeasure f = if hf : ConvexOn ℝ Set.univ f then hf.rightDerivStieltjes.measure else 0
theorem
ConvexOn.curvatureMeasure_of_convexOn
{f : ℝ → ℝ}
(hf : ConvexOn ℝ Set.univ f)
:
ConvexOn.curvatureMeasure f = hf.rightDerivStieltjes.measure
Equations
- ⋯ = ⋯
@[simp]
@[simp]
theorem
ConvexOn.curvatureMeasure_linear
(a : ℝ)
:
(ConvexOn.curvatureMeasure fun (x : ℝ) => a * x) = 0
@[simp]
theorem
ConvexOn.curvatureMeasure_add_const
{f : ℝ → ℝ}
(c : ℝ)
:
(ConvexOn.curvatureMeasure fun (x : ℝ) => f x + c) = ConvexOn.curvatureMeasure f
@[simp]
theorem
ConvexOn.curvatureMeasure_add_linear
{f : ℝ → ℝ}
(a : ℝ)
:
(ConvexOn.curvatureMeasure fun (x : ℝ) => f x + a * x) = ConvexOn.curvatureMeasure f
theorem
ConvexOn.convex_taylor
{f : ℝ → ℝ}
(hf : ConvexOn ℝ Set.univ f)
(hf_cont : Continuous f)
{a : ℝ}
{b : ℝ}
:
f b - f a - rightDeriv f a * (b - a) = ∫ (x : ℝ) in a..b, b - x ∂ConvexOn.curvatureMeasure f
A Taylor formula for convex functions in terms of the right derivative and the curvature measure.