Documentation

TestingLowerBounds.CurvatureMeasure

theorem StieltjesFunction.measure_Iio (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (↑f) Filter.atBot (nhds l)) (x : ) :
f.measure (Set.Iio x) = ENNReal.ofReal (Function.leftLim (↑f) x - l)
theorem StieltjesFunction.measure_Ioi (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (↑f) Filter.atTop (nhds l)) (x : ) :
f.measure (Set.Ioi x) = ENNReal.ofReal (l - f x)
theorem StieltjesFunction.measure_Ioi_of_tendsto_atTop_atTop (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop) (x : ) :
f.measure (Set.Ioi x) =
theorem StieltjesFunction.measure_Ici_of_tendsto_atTop_atTop (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop) (x : ) :
f.measure (Set.Ici x) =
theorem StieltjesFunction.measure_Iic_of_tendsto_atBot_atBot (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot) (x : ) :
f.measure (Set.Iic x) =
theorem StieltjesFunction.measure_Iio_of_tendsto_atBot_atBot (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot) (x : ) :
f.measure (Set.Iio x) =
theorem StieltjesFunction.measure_univ_of_tendsto_atTop_atTop (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atTop Filter.atTop) :
f.measure Set.univ =
theorem StieltjesFunction.measure_univ_of_tendsto_atBot_atBot (f : StieltjesFunction) (hf : Filter.Tendsto (↑f) Filter.atBot Filter.atBot) :
f.measure Set.univ =
@[irreducible]

The curvature measure induced by a convex function. It is defined as the only measure that has the right derivative of the function as a CDF. For nonconvex functions it is defined as the zero measure.

Equations
Instances For
    theorem ConvexOn.curvatureMeasure_def (f : ) :
    ConvexOn.curvatureMeasure f = if hf : ConvexOn Set.univ f then hf.rightDerivStieltjes.measure else 0
    theorem ConvexOn.curvatureMeasure_of_convexOn {f : } (hf : ConvexOn Set.univ f) :
    ConvexOn.curvatureMeasure f = hf.rightDerivStieltjes.measure
    @[simp]
    @[simp]
    theorem ConvexOn.convex_taylor {f : } (hf : ConvexOn Set.univ f) (hf_cont : Continuous f) {a : } {b : } :
    f b - f a - rightDeriv f a * (b - a) = ∫ (x : ) in a..b, b - xConvexOn.curvatureMeasure f

    A Taylor formula for convex functions in terms of the right derivative and the curvature measure.