Documentation

TestingLowerBounds.CompProd

TODO #

theorem ProbabilityTheory.singularPart_compProd_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] :
(μ.compProd κ).singularPart (ν.compProd κ) = (μ.singularPart ν).compProd κ
theorem ProbabilityTheory.singularPart_compProd'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).singularPart (ν.compProd η) = (μ.singularPart ν).compProd (η.withDensity (κ.rnDeriv η)) + (μ.singularPart ν).compProd (κ.singularPart η) + (ν.withDensity (μ.rnDeriv ν)).compProd (κ.singularPart η)
theorem ProbabilityTheory.singularPart_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).singularPart (ν.compProd η) = (μ.singularPart ν).compProd (η.withDensity (κ.rnDeriv η)) + μ.compProd (κ.singularPart η)
theorem ProbabilityTheory.singularPart_compProd' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).singularPart (ν.compProd η) = (μ.singularPart ν).compProd κ + (ν.withDensity (μ.rnDeriv ν)).compProd (κ.singularPart η)
theorem ProbabilityTheory.singularPart_compProd_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(μ.compProd κ).singularPart (μ.compProd η) = μ.compProd (κ.singularPart η)
theorem MeasureTheory.Integrable.compProd_mk_left_ae' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] ⦃f : α × βE (hf : MeasureTheory.Integrable f (μ.compProd κ)) :
∀ᵐ (x : α) ∂μ, MeasureTheory.Integrable (fun (y : β) => f (x, y)) (κ x)
theorem MeasureTheory.Integrable.integral_norm_compProd' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] ⦃f : α × βE (hf : MeasureTheory.Integrable f (μ.compProd κ)) :
MeasureTheory.Integrable (fun (x : α) => ∫ (y : β), f (x, y)κ x) μ
theorem MeasureTheory.Integrable.integral_compProd' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [MeasureTheory.SFinite μ] [ProbabilityTheory.IsSFiniteKernel κ] ⦃f : α × βE [NormedSpace E] (hf : MeasureTheory.Integrable f (μ.compProd κ)) :
MeasureTheory.Integrable (fun (x : α) => ∫ (y : β), f (x, y)κ x) μ
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_iff_of_nonneg' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_nonneg : ∀ (x : ), 0 x0 f x) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toReal) (ν.compProd η) (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a) ν
theorem ProbabilityTheory.integrable_add_affine_iff {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (f : ) (a : ) (b : ) :
MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal + a * (μ.rnDeriv ν x).toReal + b) ν MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν
theorem ProbabilityTheory.integrable_sub_affine_iff {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (f : ) (a : ) (b : ) :
MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal - (a * (μ.rnDeriv ν x).toReal + b)) ν MeasureTheory.Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toReal) (ν.compProd η) (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a) ν
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_iff'_of_ac {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_ac : (μ.compProd κ).AbsolutelyContinuous (μ.compProd η)) (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toReal) (ν.compProd η) (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, x)).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) ν
theorem ProbabilityTheory.f_compProd_congr_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] :
∀ᵐ (a : α) ∂ν, (fun (b : β) => f ((μ.compProd κ).rnDeriv (ν.compProd κ) (a, b)).toReal) =ᵐ[κ a] fun (x : β) => f (μ.rnDeriv ν a).toReal
theorem ProbabilityTheory.integral_f_compProd_left_congr {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] :
(fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd κ) (a, b)).toRealκ a) =ᵐ[ν] fun (a : α) => ((κ a) Set.univ).toReal * f (μ.rnDeriv ν a).toReal
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_left_iff' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd κ) x).toReal) (ν.compProd κ) MeasureTheory.Integrable (fun (a : α) => ((κ a) Set.univ).toReal * f (μ.rnDeriv ν a).toReal) ν
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_left_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsMarkovKernel κ] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd κ) x).toReal) (ν.compProd κ) MeasureTheory.Integrable (fun (a : α) => f (μ.rnDeriv ν a).toReal) ν
theorem ProbabilityTheory.f_compProd_congr {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
∀ᵐ (a : α) ∂ν, (fun (b : β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toReal) =ᵐ[η a] fun (b : β) => f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) b).toReal
theorem ProbabilityTheory.integral_f_compProd_congr {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (ν.compProd η) (a, b)).toRealη a) =ᵐ[ν] fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) b).toRealη a
theorem ProbabilityTheory.integral_f_compProd_right_congr {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
(fun (a : α) => ∫ (b : β), f ((μ.compProd κ).rnDeriv (μ.compProd η) (a, b)).toRealη a) =ᵐ[μ] fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a
theorem ProbabilityTheory.integrable_f_rnDeriv_of_integrable_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (hf_int : MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (μ.compProd η) x).toReal) (μ.compProd η)) :
∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (ν.compProd η) x).toReal) (ν.compProd η) (∀ᵐ (a : α) ∂ν, MeasureTheory.Integrable (fun (x : β) => f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) x).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f (μ.rnDeriv ν a * (κ a).rnDeriv (η a) b).toRealη a) ν
theorem ProbabilityTheory.integrable_f_rnDeriv_compProd_right_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (hf : MeasureTheory.StronglyMeasurable f) (h_cvx : ConvexOn (Set.Ici 0) f) :
MeasureTheory.Integrable (fun (x : α × β) => f ((μ.compProd κ).rnDeriv (μ.compProd η) x).toReal) (μ.compProd η) (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ