Radon-Nikodym derivative and Lebesgue decomposition for kernels #
theorem
ProbabilityTheory.Kernel.ae_compProd_of_ae_fst
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{μ : MeasureTheory.Measure α}
(κ : ProbabilityTheory.Kernel α γ)
{p : α → Prop}
(hp : MeasurableSet {x : α | p x})
(h : ∀ᵐ (a : α) ∂μ, p a)
:
∀ᵐ (x : α × γ) ∂μ.compProd κ, p x.1
theorem
ProbabilityTheory.Kernel.ae_eq_compProd_of_ae_eq_fst
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{β : Type u_3}
:
∀ {x : MeasurableSpace β} [inst : AddGroup β] [inst_1 : MeasurableSingletonClass β] [inst : MeasurableSub₂ β]
(μ : MeasureTheory.Measure α) (κ : ProbabilityTheory.Kernel α γ) {f g : α → β},
Measurable f → Measurable g → f =ᵐ[μ] g → (fun (p : α × γ) => f p.1) =ᵐ[μ.compProd κ] fun (p : α × γ) => g p.1
theorem
ProbabilityTheory.Kernel.ae_eq_compProd_of_forall_ae_eq
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{β : Type u_3}
:
∀ {x : MeasurableSpace β} [inst : AddGroup β] [inst_1 : MeasurableSingletonClass β] [inst : MeasurableSub₂ β]
(μ : MeasureTheory.Measure α) (κ : ProbabilityTheory.Kernel α γ) {f g : α → γ → β},
Measurable (Function.uncurry f) →
Measurable (Function.uncurry g) →
(∀ (a : α), f a =ᵐ[κ a] g a) → (fun (p : α × γ) => f p.1 p.2) =ᵐ[μ.compProd κ] fun (p : α × γ) => g p.1 p.2
theorem
ProbabilityTheory.Kernel.ENNReal.ae_eq_compProd_of_ae_eq_fst
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
(μ : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
{f : α → ENNReal}
{g : α → ENNReal}
(hf : Measurable f)
(hg : Measurable g)
(h : f =ᵐ[μ] g)
:
theorem
ProbabilityTheory.Kernel.ENNReal.ae_eq_compProd_of_forall_ae_eq
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
(μ : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
{f : α → γ → ENNReal}
{g : α → γ → ENNReal}
(hf : Measurable (Function.uncurry f))
(hg : Measurable (Function.uncurry g))
(h : ∀ (a : α), f a =ᵐ[κ a] g a)
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_left_of_ac
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure α}
(hμν : μ.AbsolutelyContinuous ν)
(κ : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
:
theorem
ProbabilityTheory.Kernel.todo
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_left
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_left'
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_compProd
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α γ}
{η : ProbabilityTheory.Kernel α γ}
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_ac : (μ.compProd κ).AbsolutelyContinuous (μ.compProd η))
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure ν]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_compProd'
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α γ}
{η : ProbabilityTheory.Kernel α γ}
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(h_ac : (μ.compProd κ).AbsolutelyContinuous (μ.compProd η))
(ν : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure ν]
:
theorem
ProbabilityTheory.Kernel.todo'
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.todo1
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.todo2
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.setLIntegral_rnDeriv_right
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{κ : ProbabilityTheory.Kernel α γ}
{η : ProbabilityTheory.Kernel α γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
{a : α}
(hκη : (κ a).AbsolutelyContinuous (η a))
(t : Set γ)
:
∫⁻ (b : γ) in t, κ.rnDeriv η a b ∂η a = (κ a) t
theorem
ProbabilityTheory.Kernel.setLIntegral_rnDeriv_compProd
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
{μ : MeasureTheory.Measure α}
{κ : ProbabilityTheory.Kernel α γ}
{η : ProbabilityTheory.Kernel α γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
(hκη : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
{s : Set α}
(hs : MeasurableSet s)
{t : Set γ}
(ht : MeasurableSet t)
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_right_of_ac
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
{κ : ProbabilityTheory.Kernel α γ}
{η : ProbabilityTheory.Kernel α γ}
(h_ac : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_right
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd_right'
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.rnDeriv_measure_compProd'
{α : Type u_1}
{γ : Type u_2}
{mα : MeasurableSpace α}
{mγ : MeasurableSpace γ}
[MeasurableSpace.CountableOrCountablyGenerated α γ]
(μ : MeasureTheory.Measure α)
(ν : MeasureTheory.Measure α)
(κ : ProbabilityTheory.Kernel α γ)
(η : ProbabilityTheory.Kernel α γ)
[MeasureTheory.IsFiniteMeasure μ]
[MeasureTheory.IsFiniteMeasure ν]
[ProbabilityTheory.IsFiniteKernel κ]
[ProbabilityTheory.IsFiniteKernel η]
: