Documentation

TestingLowerBounds.ForMathlib.Integrable

Integrability results #

theorem MeasureTheory.integrable_toReal_iff {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : αENNReal} (hf : AEMeasurable f μ) (hf_ne_top : ∀ᵐ (x : α) ∂μ, f x ) :
MeasureTheory.Integrable (fun (x : α) => (f x).toReal) μ ∫⁻ (x : α), f xμ
theorem MeasureTheory.Integrable.neg' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {f : αβ} (hf : MeasureTheory.Integrable f μ) :
MeasureTheory.Integrable (fun (x : α) => -f x) μ
@[simp]
theorem MeasureTheory.integrable_add_iff_integrable_left' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {f : αβ} {g : αβ} (hf : MeasureTheory.Integrable f μ) :
MeasureTheory.Integrable (fun (x : α) => g x + f x) μ MeasureTheory.Integrable g μ
@[simp]
theorem MeasureTheory.integrable_add_iff_integrable_right' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {f : αβ} {g : αβ} (hf : MeasureTheory.Integrable f μ) :
MeasureTheory.Integrable (fun (x : α) => f x + g x) μ MeasureTheory.Integrable g μ
theorem MeasureTheory.Integrable.rnDeriv_smul {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [μ.HaveLebesgueDecomposition ν] (hμν : μ.AbsolutelyContinuous ν) [MeasureTheory.SigmaFinite μ] {f : αE} (hf : MeasureTheory.Integrable f μ) :
MeasureTheory.Integrable (fun (x : α) => (μ.rnDeriv ν x).toReal f x) ν
theorem MeasureTheory.integrable_of_le_of_le {α : Type u_3} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α} {g₁ : α} {g₂ : α} (hf : MeasureTheory.AEStronglyMeasurable f μ) (h_le₁ : g₁ ≤ᵐ[μ] f) (h_le₂ : f ≤ᵐ[μ] g₂) (h_int₁ : MeasureTheory.Integrable g₁ μ) (h_int₂ : MeasureTheory.Integrable g₂ μ) :