Documentation

BrownianMotion.StochasticIntegral.LocalMartingale

Local (sub)martingales #

def ProbabilityTheory.IsLocalMartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω := by volume_tac) :

A stochastic process is a local martingale if it satisfies the martingale property locally.

Equations
Instances For
    def ProbabilityTheory.IsLocalSubmartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} [LinearOrder ι] [OrderBot ι] [LE E] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω := by volume_tac) :

    A stochastic process is a local submartingale if it satisfies the submartingale property locally.

    Equations
    Instances For
      theorem ProbabilityTheory.isStable_martingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } :
      IsStable (fun (X : ιΩE) => MeasureTheory.Martingale X 𝓕 P) 𝓕

      Martingales are a stable class.

      theorem ProbabilityTheory.isStable_submartingale {ι : Type u_1} {Ω : Type u_2} { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [LinearOrder ι] [OrderBot ι] {𝓕 : MeasureTheory.Filtration ι } :
      IsStable (fun (X : ιΩ) => MeasureTheory.Submartingale X 𝓕 P) 𝓕

      Submartingales are a stable class.