Documentation

BrownianMotion.StochasticIntegral.LocalMartingale

Local (sub)martingales #

def ProbabilityTheory.IsLocalMartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω := by volume_tac) :

A stochastic process is a local martingale if it satisfies the martingale property locally.

Equations
Instances For
    def ProbabilityTheory.IsLocalSubmartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} [LE E] (X : ιΩE) (𝓕 : MeasureTheory.Filtration ι ) (P : MeasureTheory.Measure Ω := by volume_tac) :

    A stochastic process is a local submartingale if it satisfies the submartingale property locally.

    Equations
    Instances For
      theorem ProbabilityTheory.Martingale.IsLocalMartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } (hX : MeasureTheory.Martingale X 𝓕 P) (hC : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      theorem ProbabilityTheory.Submartingale.IsLocalSubmartingale {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} {X : ιΩE} {𝓕 : MeasureTheory.Filtration ι } [LE E] (hX : MeasureTheory.Submartingale X 𝓕 P) (hC : ∀ (ω : Ω), IsCadlag fun (x : ι) => X x ω) :
      theorem MeasureTheory.StronglyAdapted.stoppedProcess_indicator {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] { : MeasurableSpace Ω} {X : ιΩE} {𝓕 : Filtration ι } [SecondCountableTopology ι] [MeasurableSpace ι] [BorelSpace ι] [TopologicalSpace.PseudoMetrizableSpace ι] (hX : StronglyAdapted 𝓕 X) (hC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) {τ : ΩWithTop ι} ( : IsStoppingTime 𝓕 τ) :
      StronglyAdapted 𝓕 (MeasureTheory.stoppedProcess (fun (i : ι) => {ω : Ω | < τ ω}.indicator (X i)) τ)
      theorem MeasureTheory.Martingale.stoppedProcess_indicator {ι : Type u_1} {Ω : Type u_2} {E : Type u_3} [LinearOrder ι] [OrderBot ι] [TopologicalSpace ι] [OrderTopology ι] [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] { : MeasurableSpace Ω} {P : Measure Ω} {X : ιΩE} {𝓕 : Filtration ι } [SecondCountableTopology ι] [MeasurableSpace ι] [BorelSpace ι] [TopologicalSpace.PseudoMetrizableSpace ι] [MeasurableSpace E] [BorelSpace E] [SecondCountableTopology E] [IsFiniteMeasure P] [Approximable 𝓕 P] (hX : Martingale X 𝓕 P) (hC : ∀ (ω : Ω), Function.RightContinuous fun (x : ι) => X x ω) {τ : ΩWithTop ι} ( : IsStoppingTime 𝓕 τ) :
      Martingale (stoppedProcess (fun (i : ι) => {ω : Ω | < τ ω}.indicator (X i)) τ) 𝓕 P

      Càdlàg martingales are a stable class.

      Càdlàg submartingales are a stable class.