Covariance matrix #
@[simp]
theorem
ProbabilityTheory.covarianceBilinDual_self_nonneg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.IsFiniteMeasure μ]
(L : StrongDual ℝ E)
 :
theorem
ProbabilityTheory.isPosSemidef_covarianceBilinDual
{E : Type u_1}
[NormedAddCommGroup E]
[CompleteSpace E]
[NormedSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.IsFiniteMeasure μ]
 :
noncomputable def
ProbabilityTheory.covInnerBilin
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(μ : MeasureTheory.Measure E)
 :
Covariance of a measure on an inner product space, as a continuous bilinear form.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ProbabilityTheory.covInnerBilin_zero
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
 :
theorem
ProbabilityTheory.covInnerBilin_eq_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
(x y : E)
 :
((covInnerBilin μ) x) y =   ((covarianceBilinDual μ) ((InnerProductSpace.toDualMap ℝ E) x)) ((InnerProductSpace.toDualMap ℝ E) y)
theorem
ProbabilityTheory.covInnerBilin_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x y : E)
 :
theorem
ProbabilityTheory.IsGaussian.covInnerBilin_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
[SecondCountableTopology E]
[CompleteSpace E]
(x y : E)
 :
theorem
ProbabilityTheory.covInnerBilin_comm
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[MeasureTheory.IsFiniteMeasure μ]
(x y : E)
 :
theorem
ProbabilityTheory.covInnerBilin_self
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x : E)
 :
theorem
ProbabilityTheory.covInnerBilin_apply_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x y : E)
 :
theorem
ProbabilityTheory.covInnerBilin_real
{μ : MeasureTheory.Measure ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x y : ℝ)
 :
theorem
ProbabilityTheory.covInnerBilin_real_self
{μ : MeasureTheory.Measure ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x : ℝ)
 :
theorem
ProbabilityTheory.covInnerBilin_self_nonneg
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(x : E)
 :
theorem
ProbabilityTheory.isPosSemidef_covInnerBilin
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
 :
theorem
ProbabilityTheory.IsGaussian.isPosSemidef_covInnerBilin
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[SecondCountableTopology E]
[CompleteSpace E]
[IsGaussian μ]
 :
theorem
ProbabilityTheory.covInnerBilin_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
{F : Type u_2}
[NormedAddCommGroup F]
[InnerProductSpace ℝ F]
[MeasurableSpace F]
[BorelSpace F]
[CompleteSpace E]
[FiniteDimensional ℝ F]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(L : E →L[ℝ] F)
(u v : F)
 :
((covInnerBilin (MeasureTheory.Measure.map (⇑L) μ)) u) v =   ((covInnerBilin μ) ((ContinuousLinearMap.adjoint L) u)) ((ContinuousLinearMap.adjoint L) v)
theorem
ProbabilityTheory.covInnerBilin_map_const_add
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[CompleteSpace E]
[MeasureTheory.IsProbabilityMeasure μ]
(c : E)
(h : MeasureTheory.MemLp id 2 μ)
 :
theorem
ProbabilityTheory.covInnerBilin_apply_basisFun
{ι : Type u_2}
{Ω : Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X : ι → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(i j : ι)
 :
((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ))
      ((EuclideanSpace.basisFun ι ℝ) i))
    ((EuclideanSpace.basisFun ι ℝ) j) =   covariance (X i) (X j) μ
theorem
ProbabilityTheory.covInnerBilin_apply_basisFun_self
{ι : Type u_2}
{Ω : Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X : ι → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(i : ι)
 :
((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ))
      ((EuclideanSpace.basisFun ι ℝ) i))
    ((EuclideanSpace.basisFun ι ℝ) i) =   variance (X i) μ
theorem
ProbabilityTheory.covInnerBilin_apply_pi
{ι : Type u_2}
{Ω : Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X : ι → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(x y : EuclideanSpace ℝ ι)
 :
((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) x) y =   ∑ i : ι, ∑ j : ι, x i * y j * covariance (X i) (X j) μ
theorem
ProbabilityTheory.covInnerBilin_apply_prod
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X Y : Ω → ℝ}
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(x y : WithLp 2 (ℝ × ℝ))
 :
((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 (X ω, Y ω)) μ)) x) y =   x.1 * y.1 * variance X μ + (x.1 * y.2 + x.2 * y.1) * covariance X Y μ + x.2 * y.2 * variance Y μ
noncomputable def
ProbabilityTheory.covMatrix
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
(μ : MeasureTheory.Measure E)
 :
Matrix (Fin (Module.finrank ℝ E)) (Fin (Module.finrank ℝ E)) ℝ
Covariance matrix of a measure on a finite dimensional inner product space.
Equations
Instances For
theorem
ProbabilityTheory.covMatrix_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
(μ : MeasureTheory.Measure E)
(i j : Fin (Module.finrank ℝ E))
 :
theorem
ProbabilityTheory.covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x : Fin (Module.finrank ℝ E) → ℝ)
 :
(covMatrix μ).mulVec x = fun (i : Fin (Module.finrank ℝ E)) =>
  ((covInnerBilin μ) ((stdOrthonormalBasis ℝ E) i)) (∑ j : Fin (Module.finrank ℝ E), x j • (stdOrthonormalBasis ℝ E) j)
theorem
ProbabilityTheory.dotProduct_covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x y : Fin (Module.finrank ℝ E) → ℝ)
 :
x ⬝ᵥ (covMatrix μ).mulVec y =   ((covInnerBilin μ) (∑ j : Fin (Module.finrank ℝ E), x j • (stdOrthonormalBasis ℝ E) j))
    (∑ j : Fin (Module.finrank ℝ E), y j • (stdOrthonormalBasis ℝ E) j)
theorem
ProbabilityTheory.covInnerBilin_eq_dotProduct_covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x y : E)
 :
((covInnerBilin μ) x) y = (stdOrthonormalBasis ℝ E).repr x ⬝ᵥ (covMatrix μ).mulVec ((stdOrthonormalBasis ℝ E).repr y)
theorem
ProbabilityTheory.covMatrix_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[InnerProductSpace ℝ F]
[MeasurableSpace F]
[BorelSpace F]
[FiniteDimensional ℝ F]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(L : E →L[ℝ] F)
(i j : Fin (Module.finrank ℝ F))
 :
covMatrix (MeasureTheory.Measure.map (⇑L) μ) i j =   (stdOrthonormalBasis ℝ E).repr ((ContinuousLinearMap.adjoint L) ((stdOrthonormalBasis ℝ F) i)) ⬝ᵥ     (covMatrix μ).mulVec
      ((stdOrthonormalBasis ℝ E).repr ((ContinuousLinearMap.adjoint L) ((stdOrthonormalBasis ℝ F) j)))
theorem
ProbabilityTheory.posSemidef_covMatrix
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
[IsGaussian μ]
 :
(covMatrix μ).PosSemidef