Covariance matrix #
theorem
ProbabilityTheory.isPosSemidef_covarianceBilinDual
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
:
theorem
ProbabilityTheory.IsGaussian.covarianceBilin_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
[SecondCountableTopology E]
[CompleteSpace E]
(x y : E)
:
theorem
ProbabilityTheory.covarianceBilin_apply_prod
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
{X Y : Ω → ℝ}
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(x y : WithLp 2 (ℝ × ℝ))
:
theorem
ProbabilityTheory.isPosSemidef_covarianceBilin'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
:
theorem
ProbabilityTheory.isSymm_covarianceBilin
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
:
noncomputable def
ProbabilityTheory.covMatrix
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
(μ : MeasureTheory.Measure E)
:
Matrix (Fin (Module.finrank ℝ E)) (Fin (Module.finrank ℝ E)) ℝ
Covariance matrix of a measure on a finite dimensional inner product space.
Equations
Instances For
theorem
ProbabilityTheory.covMatrix_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
[FiniteDimensional ℝ E]
(μ : MeasureTheory.Measure E)
(i j : Fin (Module.finrank ℝ E))
:
theorem
ProbabilityTheory.covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x : Fin (Module.finrank ℝ E) → ℝ)
:
(covMatrix μ).mulVec x = fun (i : Fin (Module.finrank ℝ E)) =>
((covarianceBilin μ) ((stdOrthonormalBasis ℝ E) i))
(∑ j : Fin (Module.finrank ℝ E), x j • (stdOrthonormalBasis ℝ E) j)
theorem
ProbabilityTheory.dotProduct_covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x y : Fin (Module.finrank ℝ E) → ℝ)
:
x ⬝ᵥ (covMatrix μ).mulVec y = ((covarianceBilin μ) (∑ j : Fin (Module.finrank ℝ E), x j • (stdOrthonormalBasis ℝ E) j))
(∑ j : Fin (Module.finrank ℝ E), y j • (stdOrthonormalBasis ℝ E) j)
theorem
ProbabilityTheory.covarianceBilin_eq_dotProduct_covMatrix_mulVec
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
(x y : E)
:
((covarianceBilin μ) x) y = ((stdOrthonormalBasis ℝ E).repr x).ofLp ⬝ᵥ (covMatrix μ).mulVec ((stdOrthonormalBasis ℝ E).repr y).ofLp
theorem
ProbabilityTheory.covMatrix_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
[InnerProductSpace ℝ F]
[MeasurableSpace F]
[BorelSpace F]
[FiniteDimensional ℝ F]
[MeasureTheory.IsFiniteMeasure μ]
(h : MeasureTheory.MemLp id 2 μ)
(L : E →L[ℝ] F)
(i j : Fin (Module.finrank ℝ F))
:
covMatrix (MeasureTheory.Measure.map (⇑L) μ) i j = ((stdOrthonormalBasis ℝ E).repr ((ContinuousLinearMap.adjoint L) ((stdOrthonormalBasis ℝ F) i))).ofLp ⬝ᵥ (covMatrix μ).mulVec
((stdOrthonormalBasis ℝ E).repr ((ContinuousLinearMap.adjoint L) ((stdOrthonormalBasis ℝ F) j))).ofLp
theorem
ProbabilityTheory.posSemidef_covMatrix
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[FiniteDimensional ℝ E]
:
(covMatrix μ).PosSemidef