Documentation

BrownianMotion.Gaussian.CovMatrix

Covariance matrix #

Covariance of a measure on an inner product space, as a continuous bilinear form.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem ProbabilityTheory.covInnerBilin_apply_basisFun {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (i j : ι) :
    ((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) ((EuclideanSpace.basisFun ι ) i)) ((EuclideanSpace.basisFun ι ) j) = covariance (X i) (X j) μ
    theorem ProbabilityTheory.covInnerBilin_apply_basisFun_self {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (i : ι) :
    ((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) ((EuclideanSpace.basisFun ι ) i)) ((EuclideanSpace.basisFun ι ) i) = variance (X i) μ
    theorem ProbabilityTheory.covInnerBilin_apply_pi {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (x y : EuclideanSpace ι) :
    ((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) x) y = i : ι, j : ι, x i * y j * covariance (X i) (X j) μ
    theorem ProbabilityTheory.covInnerBilin_apply_prod {Ω : Type u_2} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X Y : Ω} (hX : MeasureTheory.MemLp X 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) (x y : WithLp 2 ( × )) :
    ((covInnerBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 (X ω, Y ω)) μ)) x) y = x.1 * y.1 * variance X μ + (x.1 * y.2 + x.2 * y.1) * covariance X Y μ + x.2 * y.2 * variance Y μ

    Covariance matrix of a measure on a finite dimensional inner product space.

    Equations
    Instances For