Documentation

BrownianMotion.Auxiliary.MeasureTheory

Measure theory lemmas to be upstreamed to Mathlib #

theorem AEMeasurable.eval {X : Type u_1} {ι : Type u_2} {Y : ιType u_3} {mX : MeasurableSpace X} {μ : MeasureTheory.Measure X} [(i : ι) → MeasurableSpace (Y i)] {i : ι} {f : X(i : ι) → Y i} (hf : AEMeasurable f μ) :
AEMeasurable (fun (x : X) => f x i) μ
theorem Filter.EventuallyEq.div' {α : Type u_1} {β : Type u_2} [Div β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f / f' =ᶠ[l] g / g'
theorem Filter.EventuallyEq.sub' {α : Type u_1} {β : Type u_2} [Sub β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f - f' =ᶠ[l] g - g'
theorem MeasureTheory.MemLp.aemeasurable {X : Type u_1} {Y : Type u_2} {mX : MeasurableSpace X} {μ : Measure X} [MeasurableSpace Y] [ENorm Y] [TopologicalSpace Y] [TopologicalSpace.PseudoMetrizableSpace Y] [BorelSpace Y] {f : XY} {p : ENNReal} (hf : MemLp f p μ) :
theorem ProbabilityTheory.charFun_pi {ι : Type u_1} [Fintype ι] {E : ιType u_2} {mE : (i : ι) → MeasurableSpace (E i)} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace (E i)] (μ : (i : ι) → MeasureTheory.Measure (E i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (t : PiLp 2 E) :
theorem MeasureTheory.Measure.pi_map_eval {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → Measure (Ω i)} [∀ (i : ι), IsFiniteMeasure (μ i)] [DecidableEq ι] (i : ι) :
map (Function.eval i) (Measure.pi μ) = (∏ jFinset.univ.erase i, (μ j) Set.univ) μ i
theorem ProbabilityTheory.measurePreserving_eval {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (i : ι) :
theorem ProbabilityTheory.iIndepFun_pi {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {𝒳 : ιType u_3} [(i : ι) → MeasurableSpace (𝒳 i)] {X : (i : ι) → Ω i𝒳 i} (mX : ∀ (i : ι), Measurable (X i)) :
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem ProbabilityTheory.iIndepFun_pi₀ {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {𝒳 : ιType u_3} [(i : ι) → MeasurableSpace (𝒳 i)] {X : (i : ι) → Ω i𝒳 i} (mX : ∀ (i : ι), AEMeasurable (X i) (μ i)) :
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem ProbabilityTheory.variance_pi {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {X : (i : ι) → Ω i} (h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i)) :
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = i : ι, variance (X i) (μ i)
theorem ProbabilityTheory.variance_sub {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} [MeasureTheory.IsFiniteMeasure μ] (hX : MeasureTheory.MemLp X 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
variance (X - Y) μ = variance X μ - 2 * covariance X Y μ + variance Y μ
theorem ProbabilityTheory.variance_fun_sub {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} [MeasureTheory.IsFiniteMeasure μ] (hX : MeasureTheory.MemLp X 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
variance (fun (ω : Ω) => X ω - Y ω) μ = variance (fun (ω : Ω) => X ω) μ - 2 * covariance (fun (ω : Ω) => X ω) (fun (ω : Ω) => Y ω) μ + variance (fun (ω : Ω) => Y ω) μ
theorem ProbabilityTheory.covariance_mul_left {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} (c : ) :
covariance (fun (ω : Ω) => c * X ω) Y μ = c * covariance X Y μ
theorem ProbabilityTheory.covariance_mul_right {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X Y : Ω} (c : ) :
covariance X (fun (ω : Ω) => c * Y ω) μ = c * covariance X Y μ
theorem ProbabilityTheory.covariance_sum_left' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance (∑ is, X i) Y μ = is, covariance (X i) Y μ
theorem ProbabilityTheory.covariance_sum_left {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance (∑ i : ι, X i) Y μ = i : ι, covariance (X i) Y μ
theorem ProbabilityTheory.covariance_fun_sum_left' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance (fun (ω : Ω) => is, X i ω) Y μ = is, covariance (fun (ω : Ω) => X i ω) Y μ
theorem ProbabilityTheory.covariance_fun_sum_left {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance (fun (ω : Ω) => i : ι, X i ω) Y μ = i : ι, covariance (fun (ω : Ω) => X i ω) Y μ
theorem ProbabilityTheory.covariance_sum_right' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance Y (∑ is, X i) μ = is, covariance Y (X i) μ
theorem ProbabilityTheory.covariance_sum_right {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance Y (∑ i : ι, X i) μ = i : ι, covariance Y (X i) μ
theorem ProbabilityTheory.covariance_fun_sum_right' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance Y (fun (ω : Ω) => is, X i ω) μ = is, covariance Y (fun (ω : Ω) => X i ω) μ
theorem ProbabilityTheory.covariance_fun_sum_right {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Y : Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
covariance Y (fun (ω : Ω) => i : ι, X i ω) μ = i : ι, covariance Y (fun (ω : Ω) => X i ω) μ
theorem ProbabilityTheory.covariance_sum_sum' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] {ι' : Type u_3} {Y : ι'Ω} {t : Finset ι'} (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : it, MeasureTheory.MemLp (Y i) 2 μ) :
covariance (∑ is, X i) (∑ jt, Y j) μ = is, jt, covariance (X i) (Y j) μ
theorem ProbabilityTheory.covariance_sum_sum {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] {ι' : Type u_3} [Fintype ι'] {Y : ι'Ω} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ) :
covariance (∑ i : ι, X i) (∑ j : ι', Y j) μ = i : ι, j : ι', covariance (X i) (Y j) μ
theorem ProbabilityTheory.covariance_fun_sum_fun_sum' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] {ι' : Type u_3} {Y : ι'Ω} {t : Finset ι'} (hX : is, MeasureTheory.MemLp (X i) 2 μ) (hY : it, MeasureTheory.MemLp (Y i) 2 μ) :
covariance (fun (ω : Ω) => is, X i ω) (fun (ω : Ω) => jt, Y j ω) μ = is, jt, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => Y j ω) μ
theorem ProbabilityTheory.covariance_fun_sum_fun_sum {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] {ι' : Type u_3} [Fintype ι'] {Y : ι'Ω} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ) :
covariance (fun (ω : Ω) => i : ι, X i ω) (fun (ω : Ω) => j : ι', Y j ω) μ = i : ι, j : ι', covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => Y j ω) μ
theorem ProbabilityTheory.variance_sum' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) :
variance (∑ is, X i) μ = is, js, covariance (X i) (X j) μ
theorem ProbabilityTheory.variance_sum {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) :
variance (∑ i : ι, X i) μ = i : ι, j : ι, covariance (X i) (X j) μ
theorem ProbabilityTheory.variance_fun_sum' {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} {s : Finset ι} [MeasureTheory.IsFiniteMeasure μ] (hX : is, MeasureTheory.MemLp (X i) 2 μ) :
variance (fun (ω : Ω) => is, X i ω) μ = is, js, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => X j ω) μ
theorem ProbabilityTheory.variance_fun_sum {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_2} {X : ιΩ} [MeasureTheory.IsFiniteMeasure μ] [Fintype ι] (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) :
variance (fun (ω : Ω) => i : ι, X i ω) μ = i : ι, j : ι, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => X j ω) μ
theorem ProbabilityTheory.covariance_map_equiv {Ω : Type u_3} {Ω' : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {μ : MeasureTheory.Measure Ω'} (X Y : Ω) (Z : Ω' ≃ᵐ Ω) :
covariance X Y (MeasureTheory.Measure.map (⇑Z) μ) = covariance (X Z) (Y Z) μ
theorem ProbabilityTheory.covariance_map_fun {Ω : Type u_3} {Ω' : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {μ : MeasureTheory.Measure Ω'} {X Y : Ω} {Z : Ω'Ω} (hX : MeasureTheory.AEStronglyMeasurable X (MeasureTheory.Measure.map Z μ)) (hY : MeasureTheory.AEStronglyMeasurable Y (MeasureTheory.Measure.map Z μ)) (hZ : AEMeasurable Z μ) :
covariance X Y (MeasureTheory.Measure.map Z μ) = covariance (fun (ω : Ω') => X (Z ω)) (fun (ω : Ω') => Y (Z ω)) μ
theorem ProbabilityTheory.variance_map_equiv {Ω : Type u_3} {Ω' : Type u_4} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {μ : MeasureTheory.Measure Ω'} (X : Ω) (Y : Ω' ≃ᵐ Ω) :
variance X (MeasureTheory.Measure.map (⇑Y) μ) = variance (X Y) μ
theorem ProbabilityTheory.centralMoment_of_integral_id_eq_zero {Ω : Type u_3} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} (p : ) (hX : (x : Ω), X x μ = 0) :
centralMoment X p μ = (ω : Ω), X ω ^ p μ
theorem ContinuousLinearMap.integral_comp_id_comm {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace E] [NormedSpace 𝕜 F] [NormedSpace F] [CompleteSpace E] [CompleteSpace F] [MeasurableSpace E] {μ : MeasureTheory.Measure E} (h : MeasureTheory.Integrable _root_.id μ) (L : E →L[𝕜] F) :
(x : E), L x μ = L ( (x : E), x μ)
@[simp]
theorem zero_mem_parallelepiped {ι : Type u_1} {E : Type u_2} [Fintype ι] [AddCommGroup E] [Module E] {v : ιE} :
@[simp]
theorem nonempty_parallelepiped {ι : Type u_1} {E : Type u_2} [Fintype ι] [AddCommGroup E] [Module E] {v : ιE} :
theorem MeasureTheory.Isometry.single {ι : Type u_1} [Fintype ι] [DecidableEq ι] {E : ιType u_4} [(i : ι) → PseudoEMetricSpace (E i)] [(i : ι) → Zero (E i)] (i : ι) :
theorem MeasureTheory.memLp_pi_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
MemLp (fun (ω : Ω) (x : ι) => X x ω) p P ∀ (i : ι), MemLp (X i) p P
theorem MeasureTheory.MemLp.of_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
(∀ (i : ι), MemLp (X i) p P)MemLp (fun (ω : Ω) (x : ι) => X x ω) p P

Alias of the reverse direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.MemLp.eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
MemLp (fun (ω : Ω) (x : ι) => X x ω) p P∀ (i : ι), MemLp (X i) p P

Alias of the forward direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.integrable_pi_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
Integrable (fun (ω : Ω) (x : ι) => X x ω) P ∀ (i : ι), Integrable (X i) P
theorem MeasureTheory.Integrable.eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
Integrable (fun (ω : Ω) (x : ι) => X x ω) P∀ (i : ι), Integrable (X i) P

Alias of the forward direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.Integrable.of_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
(∀ (i : ι), Integrable (X i) P)Integrable (fun (ω : Ω) (x : ι) => X x ω) P

Alias of the reverse direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.integral_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} [(i : ι) → NormedSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] (hX : ∀ (i : ι), Integrable (X i) P) (i : ι) :
( (ω : Ω) (x : ι), X x ω P) i = (ω : Ω), X i ω P
theorem MeasureTheory.memLp_piLp_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
MemLp X p P ∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P
theorem MeasureTheory.MemLp.eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
MemLp X p P∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P

Alias of the forward direction of MeasureTheory.memLp_piLp_iff.

theorem MeasureTheory.MemLp.of_eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
(∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P)MemLp X p P

Alias of the reverse direction of MeasureTheory.memLp_piLp_iff.

theorem MeasureTheory.integrable_piLp_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
Integrable X P ∀ (i : ι), Integrable (fun (x : Ω) => X x i) P
theorem MeasureTheory.Integrable.of_eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
(∀ (i : ι), Integrable (fun (x : Ω) => X x i) P)Integrable X P

Alias of the reverse direction of MeasureTheory.integrable_piLp_iff.

theorem MeasureTheory.Integrable.eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
Integrable X P∀ (i : ι), Integrable (fun (x : Ω) => X x i) P

Alias of the forward direction of MeasureTheory.integrable_piLp_iff.

theorem PiLp.integral_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} [(i : ι) → NormedSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] (hX : ∀ (i : ι), MeasureTheory.Integrable (fun (x : Ω) => X x i) P) (i : ι) :
( (ω : Ω), X ω P) i = (ω : Ω), X ω i P