Measure theory lemmas to be upstreamed to Mathlib #
@[simp]
theorem
ProbabilityTheory.charFun_toDual_symm_eq_charFunDual
{E : Type u_1}
[NormedAddCommGroup E]
[CompleteSpace E]
[InnerProductSpace ℝ E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
(L : StrongDual ℝ E)
:
theorem
ProbabilityTheory.eq_gaussianReal_integral_variance
{μ : MeasureTheory.Measure ℝ}
{m : ℝ}
{v : NNReal}
(h : μ = gaussianReal m v)
:
theorem
ProbabilityTheory.variance_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{X : (i : ι) → Ω i → ℝ}
(h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i))
:
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = ∑ i : ι, variance (X i) (μ i)
theorem
ProbabilityTheory.centralMoment_of_integral_id_eq_zero
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(p : ℕ)
(hX : ∫ (x : Ω), X x ∂μ = 0)
:
@[simp]
theorem
zero_mem_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
:
@[simp]
theorem
nonempty_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
:
@[simp]
theorem
volume_of_nonempty_of_subsingleton
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[Subsingleton E]
{s : Set E}
(hs : s.Nonempty)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
InnerProductSpace.volume_closedBall_div
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
{r s : ℝ}
(hr : 0 < r)
(hs : 0 < s)
:
MeasureTheory.volume (Metric.closedBall x r) / MeasureTheory.volume (Metric.closedBall y s) = ENNReal.ofReal (r / s) ^ Module.finrank ℝ E
theorem
InnerProductSpace.volume_closedBall_div'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
(r s : ENNReal)
:
MeasureTheory.volume (EMetric.closedBall x r) / MeasureTheory.volume (EMetric.closedBall y s) = (r / s) ^ Module.finrank ℝ E
theorem
ProbabilityTheory.covariance_fun_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
covariance (fun (ω : Ω) => X ω + Y ω) Z μ = covariance (fun (ω : Ω) => X ω) Z μ + covariance (fun (ω : Ω) => Y ω) Z μ
theorem
ProbabilityTheory.covariance_fun_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
covariance X (fun (ω : Ω) => Y ω + Z ω) μ = covariance X (fun (ω : Ω) => Y ω) μ + covariance X (fun (ω : Ω) => Z ω) μ
theorem
ProbabilityTheory.covariance_fun_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
covariance X (fun (ω : Ω) => Y ω - Z ω) μ = covariance X (fun (ω : Ω) => Y ω) μ - covariance X (fun (ω : Ω) => Z ω) μ
theorem
ProbabilityTheory.covariance_fun_div_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_fun_div_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
:
theorem
ProbabilityTheory.variance_fun_div
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(c : ℝ)
(hX : AEMeasurable X μ)
:
theorem
MeasurableSpace.comap_process
{Ω : Type u_1}
{T : Type u_2}
{𝓧 : T → Type u_3}
[(t : T) → MeasurableSpace (𝓧 t)]
(X : (t : T) → Ω → 𝓧 t)
:
MeasurableSpace.comap (fun (ω : Ω) (t : T) => X t ω) pi = ⨆ (t : T), MeasurableSpace.comap (X t) inferInstance
theorem
MeasurableSpace.comap_le_comap
{Ω : Type u_1}
{𝓧 : Type u_2}
{𝓨 : Type u_3}
[m𝓧 : MeasurableSpace 𝓧]
[m𝓨 : MeasurableSpace 𝓨]
{X : Ω → 𝓧}
{Y : Ω → 𝓨}
(f : 𝓧 → 𝓨)
(hf : Measurable f)
(h : Y = f ∘ X)
:
theorem
MeasureTheory.Filtration.natural_eq_comap
{Ω : Type u_1}
{ι : Type u_2}
{m : MeasurableSpace Ω}
{β : ι → Type u_3}
[(i : ι) → TopologicalSpace (β i)]
[∀ (i : ι), TopologicalSpace.MetrizableSpace (β i)]
[mβ : (i : ι) → MeasurableSpace (β i)]
[∀ (i : ι), BorelSpace (β i)]
[Preorder ι]
(u : (i : ι) → Ω → β i)
(hum : ∀ (i : ι), StronglyMeasurable (u i))
(i : ι)
:
↑(natural u hum) i = MeasurableSpace.comap (fun (ω : Ω) (j : ↑(Set.Iic i)) => u (↑j) ω) inferInstance
theorem
ProbabilityTheory.measure_eq_zero_or_one_of_indep_self
{Ω : Type u_1}
{m mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsZeroOrProbabilityMeasure P]
(hm1 : m ≤ mΩ)
(hm2 : Indep m m P)
{A : Set Ω}
(hA : MeasurableSet A)
:
theorem
ProbabilityTheory.singleton_indepSets_comap_iff
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[MeasureTheory.IsZeroOrProbabilityMeasure P]
{𝓧 : Type u_2}
{m𝓧 : MeasurableSpace 𝓧}
{A : Set Ω}
{X : Ω → 𝓧}
(hX : Measurable X)
(hA : MeasurableSet A)
:
theorem
IndepSets.setIntegral_eq_mul
{Ω : Type u_1}
{𝓧 : Type u_2}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{m𝓧 : MeasurableSpace 𝓧}
{X : Ω → 𝓧}
[MeasureTheory.IsZeroOrProbabilityMeasure μ]
{f : 𝓧 → ℝ}
{A : Set Ω}
(hA1 : ProbabilityTheory.IndepSets {A} {s : Set Ω | MeasurableSet s} μ)
(hX : Measurable X)
(hA2 : MeasurableSet A)
(hf : MeasureTheory.AEStronglyMeasurable f (MeasureTheory.Measure.map X μ))
:
theorem
Indep.singleton_indepSets
{Ω : Type u_1}
{m1 m2 mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
(h : ProbabilityTheory.Indep m1 m2 P)
{A : Set Ω}
(hA : MeasurableSet A)
:
ProbabilityTheory.IndepSets {A} {s : Set Ω | MeasurableSet s} P