Measure theory lemmas to be upstreamed to Mathlib #
theorem
MeasureTheory.MemLp.aemeasurable
{X : Type u_1}
{Y : Type u_2}
{mX : MeasurableSpace X}
{μ : Measure X}
[MeasurableSpace Y]
[ENorm Y]
[TopologicalSpace Y]
[TopologicalSpace.PseudoMetrizableSpace Y]
[BorelSpace Y]
{f : X → Y}
{p : ENNReal}
(hf : MemLp f p μ)
:
AEMeasurable f μ
theorem
ProbabilityTheory.charFun_pi
{ι : Type u_1}
[Fintype ι]
{E : ι → Type u_2}
{mE : (i : ι) → MeasurableSpace (E i)}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → InnerProductSpace ℝ (E i)]
(μ : (i : ι) → MeasureTheory.Measure (E i))
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
(t : PiLp 2 E)
:
@[simp]
theorem
ProbabilityTheory.charFun_toDual_symm_eq_charFunDual
{E : Type u_1}
[NormedAddCommGroup E]
[CompleteSpace E]
[InnerProductSpace ℝ E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.eq_gaussianReal_integral_variance
{μ : MeasureTheory.Measure ℝ}
{m : ℝ}
{v : NNReal}
(h : μ = gaussianReal m v)
:
theorem
ProbabilityTheory.measurePreserving_eval
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
(i : ι)
:
theorem
ProbabilityTheory.iIndepFun_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{𝒳 : ι → Type u_3}
{m𝒳 : (i : ι) → MeasurableSpace (𝒳 i)}
{X : (i : ι) → Ω i → 𝒳 i}
(mX : ∀ (i : ι), Measurable (X i))
:
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.iIndepFun_pi₀
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{𝒳 : ι → Type u_3}
{m𝒳 : (i : ι) → MeasurableSpace (𝒳 i)}
{X : (i : ι) → Ω i → 𝒳 i}
(mX : ∀ (i : ι), AEMeasurable (X i) (μ i))
:
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.variance_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{X : (i : ι) → Ω i → ℝ}
(h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i))
:
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = ∑ i : ι, variance (X i) (μ i)
theorem
ProbabilityTheory.variance_sub
{Ω : Type u_4}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
{X Y : Ω → ℝ}
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_map_equiv
{Ω : Type u_4}
{Ω' : Type u_5}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
(X Y : Ω → ℝ)
(Z : Ω' ≃ᵐ Ω)
:
theorem
ProbabilityTheory.variance_map_equiv
{Ω : Type u_4}
{Ω' : Type u_5}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
(X : Ω → ℝ)
(Y : Ω' ≃ᵐ Ω)
:
theorem
ProbabilityTheory.centralMoment_of_integral_id_eq_zero
{Ω : Type u_4}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(p : ℕ)
(hX : ∫ (x : Ω), X x ∂μ = 0)
:
theorem
ContinuousLinearMap.integral_comp_id_comm'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
:
theorem
ContinuousLinearMap.integral_comp_id_comm
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
:
theorem
ContinuousLinearMap.integral_id_map
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
[OpensMeasurableSpace E]
[MeasurableSpace F]
[BorelSpace F]
[SecondCountableTopology F]
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
: