Documentation

BrownianMotion.Auxiliary.MeasureTheory

Measure theory lemmas to be upstreamed to Mathlib #

theorem Filter.EventuallyEq.div' {α : Type u_1} {β : Type u_2} [Div β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f / f' =ᶠ[l] g / g'
theorem Filter.EventuallyEq.sub' {α : Type u_1} {β : Type u_2} [Sub β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f - f' =ᶠ[l] g - g'
theorem MeasureTheory.MemLp.aemeasurable {X : Type u_1} {Y : Type u_2} {mX : MeasurableSpace X} {μ : Measure X} [MeasurableSpace Y] [ENorm Y] [TopologicalSpace Y] [TopologicalSpace.PseudoMetrizableSpace Y] [BorelSpace Y] {f : XY} {p : ENNReal} (hf : MemLp f p μ) :
theorem ProbabilityTheory.charFun_pi {ι : Type u_1} [Fintype ι] {E : ιType u_2} {mE : (i : ι) → MeasurableSpace (E i)} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace (E i)] (μ : (i : ι) → MeasureTheory.Measure (E i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (t : PiLp 2 E) :
theorem ProbabilityTheory.measurePreserving_eval {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (i : ι) :
theorem ProbabilityTheory.iIndepFun_pi {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {𝒳 : ιType u_3} {m𝒳 : (i : ι) → MeasurableSpace (𝒳 i)} {X : (i : ι) → Ω i𝒳 i} (mX : ∀ (i : ι), Measurable (X i)) :
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem ProbabilityTheory.iIndepFun_pi₀ {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {𝒳 : ιType u_3} {m𝒳 : (i : ι) → MeasurableSpace (𝒳 i)} {X : (i : ι) → Ω i𝒳 i} (mX : ∀ (i : ι), AEMeasurable (X i) (μ i)) :
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem ProbabilityTheory.variance_pi {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {X : (i : ι) → Ω i} (h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i)) :
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = i : ι, variance (X i) (μ i)
theorem ProbabilityTheory.variance_sub {Ω : Type u_4} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {X Y : Ω} (hX : MeasureTheory.MemLp X 2 μ) (hY : MeasureTheory.MemLp Y 2 μ) :
variance (X - Y) μ = variance X μ - 2 * covariance X Y μ + variance Y μ
theorem ProbabilityTheory.covariance_map_equiv {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {μ : MeasureTheory.Measure Ω'} (X Y : Ω) (Z : Ω' ≃ᵐ Ω) :
covariance X Y (MeasureTheory.Measure.map (⇑Z) μ) = covariance (X Z) (Y Z) μ
theorem ProbabilityTheory.variance_map_equiv {Ω : Type u_4} {Ω' : Type u_5} { : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {μ : MeasureTheory.Measure Ω'} (X : Ω) (Y : Ω' ≃ᵐ Ω) :
variance X (MeasureTheory.Measure.map (⇑Y) μ) = variance (X Y) μ
theorem ProbabilityTheory.centralMoment_of_integral_id_eq_zero {Ω : Type u_4} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} (p : ) (hX : (x : Ω), X x μ = 0) :
centralMoment X p μ = (ω : Ω), X ω ^ p μ
theorem ContinuousLinearMap.integral_comp_id_comm {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace E] [NormedSpace 𝕜 F] [NormedSpace F] [CompleteSpace E] [CompleteSpace F] [MeasurableSpace E] {μ : MeasureTheory.Measure E} (h : MeasureTheory.Integrable _root_.id μ) (L : E →L[𝕜] F) :
(x : E), L x μ = L ( (x : E), x μ)