Measure theory lemmas to be upstreamed to Mathlib #
theorem
AEMeasurable.eval
{X : Type u_1}
{ι : Type u_2}
{Y : ι → Type u_3}
{mX : MeasurableSpace X}
{μ : MeasureTheory.Measure X}
[(i : ι) → MeasurableSpace (Y i)]
{i : ι}
{f : X → (i : ι) → Y i}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : X) => f x i) μ
theorem
MeasureTheory.MemLp.aemeasurable
{X : Type u_1}
{Y : Type u_2}
{mX : MeasurableSpace X}
{μ : Measure X}
[MeasurableSpace Y]
[ENorm Y]
[TopologicalSpace Y]
[TopologicalSpace.PseudoMetrizableSpace Y]
[BorelSpace Y]
{f : X → Y}
{p : ENNReal}
(hf : MemLp f p μ)
:
AEMeasurable f μ
theorem
ProbabilityTheory.charFun_pi
{ι : Type u_1}
[Fintype ι]
{E : ι → Type u_2}
{mE : (i : ι) → MeasurableSpace (E i)}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → InnerProductSpace ℝ (E i)]
(μ : (i : ι) → MeasureTheory.Measure (E i))
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
(t : PiLp 2 E)
:
@[simp]
theorem
ProbabilityTheory.charFun_toDual_symm_eq_charFunDual
{E : Type u_1}
[NormedAddCommGroup E]
[CompleteSpace E]
[InnerProductSpace ℝ E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.eq_gaussianReal_integral_variance
{μ : MeasureTheory.Measure ℝ}
{m : ℝ}
{v : NNReal}
(h : μ = gaussianReal m v)
:
theorem
MeasureTheory.Measure.pi_map_eval
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → Measure (Ω i)}
[∀ (i : ι), IsFiniteMeasure (μ i)]
[DecidableEq ι]
(i : ι)
:
theorem
ProbabilityTheory.measurePreserving_eval
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
(i : ι)
:
theorem
ProbabilityTheory.iIndepFun_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{𝒳 : ι → Type u_3}
[(i : ι) → MeasurableSpace (𝒳 i)]
{X : (i : ι) → Ω i → 𝒳 i}
(mX : ∀ (i : ι), Measurable (X i))
:
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.iIndepFun_pi₀
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{𝒳 : ι → Type u_3}
[(i : ι) → MeasurableSpace (𝒳 i)]
{X : (i : ι) → Ω i → 𝒳 i}
(mX : ∀ (i : ι), AEMeasurable (X i) (μ i))
:
iIndepFun (fun (i : ι) (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ)
theorem
ProbabilityTheory.variance_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{X : (i : ι) → Ω i → ℝ}
(h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i))
:
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = ∑ i : ι, variance (X i) (μ i)
theorem
ProbabilityTheory.variance_sub
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.variance_fun_sub
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_mul_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_mul_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_sum_left'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_left'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_right'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_right'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{Y : Ω → ℝ}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
{ι' : Type u_3}
{Y : ι' → Ω → ℝ}
{t : Finset ι'}
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ i ∈ t, MeasureTheory.MemLp (Y i) 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
{ι' : Type u_3}
[Fintype ι']
{Y : ι' → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_fun_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
{ι' : Type u_3}
{Y : ι' → Ω → ℝ}
{t : Finset ι'}
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ i ∈ t, MeasureTheory.MemLp (Y i) 2 μ)
:
covariance (fun (ω : Ω) => ∑ i ∈ s, X i ω) (fun (ω : Ω) => ∑ j ∈ t, Y j ω) μ = ∑ i ∈ s, ∑ j ∈ t, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => Y j ω) μ
theorem
ProbabilityTheory.covariance_fun_sum_fun_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
{ι' : Type u_3}
[Fintype ι']
{Y : ι' → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ)
:
covariance (fun (ω : Ω) => ∑ i : ι, X i ω) (fun (ω : Ω) => ∑ j : ι', Y j ω) μ = ∑ i : ι, ∑ j : ι', covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => Y j ω) μ
theorem
ProbabilityTheory.variance_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
:
theorem
ProbabilityTheory.variance_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
:
theorem
ProbabilityTheory.variance_fun_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
:
variance (fun (ω : Ω) => ∑ i ∈ s, X i ω) μ = ∑ i ∈ s, ∑ j ∈ s, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => X j ω) μ
theorem
ProbabilityTheory.variance_fun_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
:
variance (fun (ω : Ω) => ∑ i : ι, X i ω) μ = ∑ i : ι, ∑ j : ι, covariance (fun (ω : Ω) => X i ω) (fun (ω : Ω) => X j ω) μ
theorem
ProbabilityTheory.covariance_map_equiv
{Ω : Type u_3}
{Ω' : Type u_4}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
(X Y : Ω → ℝ)
(Z : Ω' ≃ᵐ Ω)
:
theorem
ProbabilityTheory.covariance_map
{Ω : Type u_3}
{Ω' : Type u_4}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
{X Y : Ω → ℝ}
{Z : Ω' → Ω}
(hX : MeasureTheory.AEStronglyMeasurable X (MeasureTheory.Measure.map Z μ))
(hY : MeasureTheory.AEStronglyMeasurable Y (MeasureTheory.Measure.map Z μ))
(hZ : AEMeasurable Z μ)
:
theorem
ProbabilityTheory.covariance_map_fun
{Ω : Type u_3}
{Ω' : Type u_4}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
{X Y : Ω → ℝ}
{Z : Ω' → Ω}
(hX : MeasureTheory.AEStronglyMeasurable X (MeasureTheory.Measure.map Z μ))
(hY : MeasureTheory.AEStronglyMeasurable Y (MeasureTheory.Measure.map Z μ))
(hZ : AEMeasurable Z μ)
:
covariance X Y (MeasureTheory.Measure.map Z μ) = covariance (fun (ω : Ω') => X (Z ω)) (fun (ω : Ω') => Y (Z ω)) μ
theorem
ProbabilityTheory.variance_map_equiv
{Ω : Type u_3}
{Ω' : Type u_4}
{mΩ : MeasurableSpace Ω}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
(X : Ω → ℝ)
(Y : Ω' ≃ᵐ Ω)
:
theorem
ProbabilityTheory.centralMoment_of_integral_id_eq_zero
{Ω : Type u_3}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(p : ℕ)
(hX : ∫ (x : Ω), X x ∂μ = 0)
:
theorem
ContinuousLinearMap.integral_comp_id_comm'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
:
theorem
ContinuousLinearMap.integral_comp_id_comm
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
:
theorem
ContinuousLinearMap.integral_id_map
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
[OpensMeasurableSpace E]
[MeasurableSpace F]
[BorelSpace F]
[SecondCountableTopology F]
(h : MeasureTheory.Integrable _root_.id μ)
(L : E →L[𝕜] F)
:
@[simp]
theorem
zero_mem_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
:
@[simp]
theorem
nonempty_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
:
@[simp]
theorem
volume_of_nonempty_of_subsingleton
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[Subsingleton E]
{s : Set E}
(hs : s.Nonempty)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
:
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
:
theorem
InnerProductSpace.volume_closedBall_div
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
{r s : ℝ}
(hr : 0 < r)
(hs : 0 < s)
:
MeasureTheory.volume (Metric.closedBall x r) / MeasureTheory.volume (Metric.closedBall y s) = ENNReal.ofReal (r / s) ^ Module.finrank ℝ E
theorem
InnerProductSpace.volume_closedBall_div'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
(r s : ENNReal)
:
MeasureTheory.volume (EMetric.closedBall x r) / MeasureTheory.volume (EMetric.closedBall y s) = (r / s) ^ Module.finrank ℝ E
theorem
MeasureTheory.Isometry.single
{ι : Type u_1}
[Fintype ι]
[DecidableEq ι]
{E : ι → Type u_4}
[(i : ι) → PseudoEMetricSpace (E i)]
[(i : ι) → Zero (E i)]
(i : ι)
:
theorem
MeasureTheory.memLp_pi_iff
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{p : ENNReal}
{X : (i : ι) → Ω → E i}
:
theorem
MeasureTheory.MemLp.of_eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{p : ENNReal}
{X : (i : ι) → Ω → E i}
:
Alias of the reverse direction of MeasureTheory.memLp_pi_iff
.
theorem
MeasureTheory.MemLp.eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{p : ENNReal}
{X : (i : ι) → Ω → E i}
:
Alias of the forward direction of MeasureTheory.memLp_pi_iff
.
theorem
MeasureTheory.integrable_pi_iff
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{X : (i : ι) → Ω → E i}
:
theorem
MeasureTheory.Integrable.eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{X : (i : ι) → Ω → E i}
:
Integrable (fun (ω : Ω) (x : ι) => X x ω) P → ∀ (i : ι), Integrable (X i) P
Alias of the forward direction of MeasureTheory.integrable_pi_iff
.
theorem
MeasureTheory.Integrable.of_eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{X : (i : ι) → Ω → E i}
:
(∀ (i : ι), Integrable (X i) P) → Integrable (fun (ω : Ω) (x : ι) => X x ω) P
Alias of the reverse direction of MeasureTheory.integrable_pi_iff
.
theorem
MeasureTheory.integral_eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{X : (i : ι) → Ω → E i}
[(i : ι) → NormedSpace ℝ (E i)]
[∀ (i : ι), CompleteSpace (E i)]
(hX : ∀ (i : ι), Integrable (X i) P)
(i : ι)
:
theorem
MeasureTheory.MemLp.eval_piLp
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{p q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
:
Alias of the forward direction of MeasureTheory.memLp_piLp_iff
.
theorem
MeasureTheory.MemLp.of_eval_piLp
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{p q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
:
Alias of the reverse direction of MeasureTheory.memLp_piLp_iff
.
theorem
MeasureTheory.integrable_piLp_iff
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
:
theorem
MeasureTheory.Integrable.of_eval_piLp
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
:
(∀ (i : ι), Integrable (fun (x : Ω) => X x i) P) → Integrable X P
Alias of the reverse direction of MeasureTheory.integrable_piLp_iff
.
theorem
MeasureTheory.Integrable.eval_piLp
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
:
Integrable X P → ∀ (i : ι), Integrable (fun (x : Ω) => X x i) P
Alias of the forward direction of MeasureTheory.integrable_piLp_iff
.
theorem
PiLp.integral_eval
{ι : Type u_1}
{Ω : Type u_2}
{E : ι → Type u_3}
[Fintype ι]
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
[(i : ι) → NormedAddCommGroup (E i)]
{q : ENNReal}
[Fact (1 ≤ q)]
{X : Ω → PiLp q E}
[(i : ι) → NormedSpace ℝ (E i)]
[∀ (i : ι), CompleteSpace (E i)]
(hX : ∀ (i : ι), MeasureTheory.Integrable (fun (x : Ω) => X x i) P)
(i : ι)
: