Measure theory lemmas to be upstreamed to Mathlib #
theorem
ProbabilityTheory.charFun_pi
{ι : Type u_1}
[Fintype ι]
{E : ι → Type u_2}
{mE : (i : ι) → MeasurableSpace (E i)}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → InnerProductSpace ℝ (E i)]
(μ : (i : ι) → MeasureTheory.Measure (E i))
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
(t : PiLp 2 E)
 :
@[simp]
theorem
ProbabilityTheory.charFun_toDual_symm_eq_charFunDual
{E : Type u_1}
[NormedAddCommGroup E]
[CompleteSpace E]
[InnerProductSpace ℝ E]
{mE : MeasurableSpace E}
{μ : MeasureTheory.Measure E}
(L : StrongDual ℝ E)
 :
theorem
ProbabilityTheory.eq_gaussianReal_integral_variance
{μ : MeasureTheory.Measure ℝ}
{m : ℝ}
{v : NNReal}
(h : μ = gaussianReal m v)
 :
theorem
ProbabilityTheory.variance_pi
{ι : Type u_1}
[Fintype ι]
{Ω : ι → Type u_2}
{mΩ : (i : ι) → MeasurableSpace (Ω i)}
{μ : (i : ι) → MeasureTheory.Measure (Ω i)}
[∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
{X : (i : ι) → Ω i → ℝ}
(h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i))
 :
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = ∑ i : ι, variance (X i) (μ i)
theorem
ProbabilityTheory.centralMoment_of_integral_id_eq_zero
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(p : ℕ)
(hX : ∫ (x : Ω), X x ∂μ = 0)
 :
theorem
ContinuousLinearMap.integral_comp_id_comm'
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable id μ)
(L : E →L[𝕜] F)
 :
theorem
ContinuousLinearMap.integral_comp_id_comm
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(h : MeasureTheory.Integrable id μ)
(L : E →L[𝕜] F)
 :
theorem
ContinuousLinearMap.integral_id_map
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
[OpensMeasurableSpace E]
[MeasurableSpace F]
[BorelSpace F]
[SecondCountableTopology F]
(h : MeasureTheory.Integrable id μ)
(L : E →L[𝕜] F)
 :
@[simp]
theorem
zero_mem_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
 :
@[simp]
theorem
nonempty_parallelepiped
{ι : Type u_1}
{E : Type u_2}
[Fintype ι]
[AddCommGroup E]
[Module ℝ E]
{v : ι → E}
 :
@[simp]
theorem
volume_of_nonempty_of_subsingleton
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[Subsingleton E]
{s : Set E}
(hs : s.Nonempty)
 :
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const
{G : Type u_1}
[Group G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const
{G : Type u_1}
[AddGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const
{G : Type u_1}
[CommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const
{G : Type u_1}
[AddCommGroup G]
[PseudoMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ℝ)
 :
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_ball_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_ball_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_ball_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_ball_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsMulLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[Group G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulLeftInvariant]
[IsIsometricSMul G G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsAddLeftInvariant.measure_closedBall_const'
{G : Type u_1}
[AddGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddLeftInvariant]
[IsIsometricVAdd G G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsMulRightInvariant.measure_closeBall_const'
{G : Type u_1}
[CommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsMulRightInvariant]
[IsIsometricSMul Gᵐᵒᵖ G]
[MeasurableMul G]
(a b : G)
(r : ENNReal)
 :
theorem
MeasureTheory.Measure.IsAddRightInvariant.measure_closeBall_const'
{G : Type u_1}
[AddCommGroup G]
[PseudoEMetricSpace G]
[MeasurableSpace G]
[OpensMeasurableSpace G]
(μ : Measure G)
[μ.IsAddRightInvariant]
[IsIsometricVAdd Gᵃᵒᵖ G]
[MeasurableAdd G]
(a b : G)
(r : ENNReal)
 :
theorem
InnerProductSpace.volume_closedBall_div
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
{r s : ℝ}
(hr : 0 < r)
(hs : 0 < s)
 :
MeasureTheory.volume (Metric.closedBall x r) / MeasureTheory.volume (Metric.closedBall y s) =   ENNReal.ofReal (r / s) ^ Module.finrank ℝ E
theorem
InnerProductSpace.volume_closedBall_div'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[FiniteDimensional ℝ E]
[MeasurableSpace E]
[BorelSpace E]
(x y : E)
(r s : ENNReal)
 :
MeasureTheory.volume (EMetric.closedBall x r) / MeasureTheory.volume (EMetric.closedBall y s) =   (r / s) ^ Module.finrank ℝ E
theorem
ProbabilityTheory.covariance_fun_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
 :
covariance (fun (ω : Ω) => X ω + Y ω) Z μ = covariance (fun (ω : Ω) => X ω) Z μ + covariance (fun (ω : Ω) => Y ω) Z μ
theorem
ProbabilityTheory.covariance_fun_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
 :
covariance X (fun (ω : Ω) => Y ω + Z ω) μ = covariance X (fun (ω : Ω) => Y ω) μ + covariance X (fun (ω : Ω) => Z ω) μ
theorem
ProbabilityTheory.covariance_fun_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
 :
theorem
ProbabilityTheory.covariance_fun_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y Z : Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
 :
covariance X (fun (ω : Ω) => Y ω - Z ω) μ = covariance X (fun (ω : Ω) => Y ω) μ - covariance X (fun (ω : Ω) => Z ω) μ
theorem
ProbabilityTheory.covariance_fun_div_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
 :
theorem
ProbabilityTheory.covariance_fun_div_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X Y : Ω → ℝ}
(c : ℝ)
 :
theorem
ProbabilityTheory.variance_fun_div
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(c : ℝ)
(hX : AEMeasurable X μ)
 :