Documentation

BrownianMotion.Auxiliary.MeasureTheory

Measure theory lemmas to be upstreamed to Mathlib #

theorem Filter.EventuallyEq.div' {α : Type u_1} {β : Type u_2} [Div β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f / f' =ᶠ[l] g / g'
theorem Filter.EventuallyEq.sub' {α : Type u_1} {β : Type u_2} [Sub β] {f f' g g' : αβ} {l : Filter α} (h : f =ᶠ[l] g) (h' : f' =ᶠ[l] g') :
f - f' =ᶠ[l] g - g'
theorem ProbabilityTheory.charFun_pi {ι : Type u_1} [Fintype ι] {E : ιType u_2} {mE : (i : ι) → MeasurableSpace (E i)} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace (E i)] (μ : (i : ι) → MeasureTheory.Measure (E i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (t : PiLp 2 E) :
theorem ProbabilityTheory.variance_pi {ι : Type u_1} [Fintype ι] {Ω : ιType u_2} { : (i : ι) → MeasurableSpace (Ω i)} {μ : (i : ι) → MeasureTheory.Measure (Ω i)} [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] {X : (i : ι) → Ω i} (h : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 (μ i)) :
variance (∑ i : ι, fun (ω : (i : ι) → Ω i) => X i (ω i)) (MeasureTheory.Measure.pi μ) = i : ι, variance (X i) (μ i)
theorem ProbabilityTheory.centralMoment_of_integral_id_eq_zero {Ω : Type u_1} { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {X : Ω} (p : ) (hX : (x : Ω), X x μ = 0) :
centralMoment X p μ = (ω : Ω), X ω ^ p μ
theorem ContinuousLinearMap.integral_comp_id_comm {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace E] [NormedSpace 𝕜 F] [NormedSpace F] [CompleteSpace E] [CompleteSpace F] [MeasurableSpace E] {μ : MeasureTheory.Measure E} (h : MeasureTheory.Integrable _root_.id μ) (L : E →L[𝕜] F) :
(x : E), L x μ = L ( (x : E), x μ)
@[simp]
theorem zero_mem_parallelepiped {ι : Type u_1} {E : Type u_2} [Fintype ι] [AddCommGroup E] [Module E] {v : ιE} :
@[simp]
theorem nonempty_parallelepiped {ι : Type u_1} {E : Type u_2} [Fintype ι] [AddCommGroup E] [Module E] {v : ιE} :
theorem MeasureTheory.Isometry.single {ι : Type u_1} [Fintype ι] [DecidableEq ι] {E : ιType u_4} [(i : ι) → PseudoEMetricSpace (E i)] [(i : ι) → Zero (E i)] (i : ι) :
theorem MeasureTheory.memLp_pi_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
MemLp (fun (ω : Ω) (x : ι) => X x ω) p P ∀ (i : ι), MemLp (X i) p P
theorem MeasureTheory.MemLp.of_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
(∀ (i : ι), MemLp (X i) p P)MemLp (fun (ω : Ω) (x : ι) => X x ω) p P

Alias of the reverse direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.MemLp.eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p : ENNReal} {X : (i : ι) → ΩE i} :
MemLp (fun (ω : Ω) (x : ι) => X x ω) p P∀ (i : ι), MemLp (X i) p P

Alias of the forward direction of MeasureTheory.memLp_pi_iff.

theorem MeasureTheory.integrable_pi_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
Integrable (fun (ω : Ω) (x : ι) => X x ω) P ∀ (i : ι), Integrable (X i) P
theorem MeasureTheory.Integrable.of_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
(∀ (i : ι), Integrable (X i) P)Integrable (fun (ω : Ω) (x : ι) => X x ω) P

Alias of the reverse direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.Integrable.eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} :
Integrable (fun (ω : Ω) (x : ι) => X x ω) P∀ (i : ι), Integrable (X i) P

Alias of the forward direction of MeasureTheory.integrable_pi_iff.

theorem MeasureTheory.integral_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {X : (i : ι) → ΩE i} [(i : ι) → NormedSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] (hX : ∀ (i : ι), Integrable (X i) P) (i : ι) :
( (ω : Ω) (x : ι), X x ω P) i = (ω : Ω), X i ω P
theorem MeasureTheory.memLp_piLp_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
MemLp X p P ∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P
theorem MeasureTheory.MemLp.of_eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
(∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P)MemLp X p P

Alias of the reverse direction of MeasureTheory.memLp_piLp_iff.

theorem MeasureTheory.MemLp.eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {p q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
MemLp X p P∀ (i : ι), MemLp (fun (x : Ω) => X x i) p P

Alias of the forward direction of MeasureTheory.memLp_piLp_iff.

theorem MeasureTheory.integrable_piLp_iff {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
Integrable X P ∀ (i : ι), Integrable (fun (x : Ω) => X x i) P
theorem MeasureTheory.Integrable.eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
Integrable X P∀ (i : ι), Integrable (fun (x : Ω) => X x i) P

Alias of the forward direction of MeasureTheory.integrable_piLp_iff.

theorem MeasureTheory.Integrable.of_eval_piLp {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} :
(∀ (i : ι), Integrable (fun (x : Ω) => X x i) P)Integrable X P

Alias of the reverse direction of MeasureTheory.integrable_piLp_iff.

theorem PiLp.integral_eval {ι : Type u_1} {Ω : Type u_2} {E : ιType u_3} [Fintype ι] { : MeasurableSpace Ω} {P : MeasureTheory.Measure Ω} [(i : ι) → NormedAddCommGroup (E i)] {q : ENNReal} [Fact (1 q)] {X : ΩPiLp q E} [(i : ι) → NormedSpace (E i)] [∀ (i : ι), CompleteSpace (E i)] (hX : ∀ (i : ι), MeasureTheory.Integrable (fun (x : Ω) => X x i) P) (i : ι) :
( (ω : Ω), X ω P) i = (ω : Ω), X ω i P