Documentation

Mathlib.Probability.Moments.CovarianceBilin

Covariance in Banach spaces #

We define the covariance of a finite measure in a Banach space E, as a continous bilinear form on Dual ℝ E.

Main definitions #

Let μ be a finite measure on a normed space E with the Borel σ-algebra. We then define

Main statements #

Implementation notes #

The hypothesis that μ has a second moment is written as MemLp id 2 μ in the code.

noncomputable def NormedSpace.Dual.toLpₗ {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (μ : MeasureTheory.Measure E) (p : ENNReal) :
Dual 𝕜 E →ₗ[𝕜] (MeasureTheory.Lp 𝕜 p μ)

Linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ and to 0 otherwise.

Equations
Instances For
    @[simp]
    theorem NormedSpace.Dual.toLpₗ_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (h_Lp : MeasureTheory.MemLp id p μ) (L : Dual 𝕜 E) :
    @[simp]
    theorem NormedSpace.Dual.toLpₗ_of_not_memLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] (h_Lp : ¬MeasureTheory.MemLp id p μ) (L : Dual 𝕜 E) :
    (toLpₗ μ p) L = 0
    noncomputable def NormedSpace.Dual.toLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] (μ : MeasureTheory.Measure E) (p : ENNReal) [Fact (1 p)] :
    Dual 𝕜 E →L[𝕜] (MeasureTheory.Lp 𝕜 p μ)

    Continuous linear map from the dual to Lp equal to MemLp.toLp if MemLp id p μ and to 0 otherwise.

    Equations
    Instances For
      @[simp]
      theorem NormedSpace.Dual.toLp_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] [Fact (1 p)] (h_Lp : MeasureTheory.MemLp id p μ) (L : Dual 𝕜 E) :
      (toLp μ p) L = MeasureTheory.MemLp.toLp L
      @[simp]
      theorem NormedSpace.Dual.toLp_of_not_memLp {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} {p : ENNReal} {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [OpensMeasurableSpace E] [Fact (1 p)] (h_Lp : ¬MeasureTheory.MemLp id p μ) (L : Dual 𝕜 E) :
      (toLp μ p) L = 0

      Continuous bilinear form with value ∫ x, L₁ x * L₂ x ∂μ on (L₁, L₂). This is equal to the covariance only if μ is centered.

      Equations
      Instances For

        Continuous bilinear form with value ∫ x, (L₁ x - μ[L₁]) * (L₂ x - μ[L₂]) ∂μ on (L₁, L₂) if MemLp id 2 μ. If not, we set it to zero.

        Equations
        Instances For
          theorem ProbabilityTheory.covarianceBilin_apply {E : Type u_1} [NormedAddCommGroup E] {mE : MeasurableSpace E} {μ : MeasureTheory.Measure E} [NormedSpace E] [BorelSpace E] [MeasureTheory.IsFiniteMeasure μ] [CompleteSpace E] (h : MeasureTheory.MemLp id 2 μ) (L₁ L₂ : NormedSpace.Dual E) :
          ((covarianceBilin μ) L₁) L₂ = (x : E), (L₁ x - (x : E), L₁ x μ) * (L₂ x - (x : E), L₂ x μ) μ