Gaussian distributions in Banach spaces: Fernique's theorem #
theorem
ProbabilityTheory.IsGaussian.memLp_id
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
(μ : MeasureTheory.Measure E)
[IsGaussian μ]
(p : ENNReal)
(hp : p ≠ ⊤)
:
A Gaussian measure has moments of all orders.
That is, the identity is in Lp for all finite p
.
theorem
ProbabilityTheory.IsGaussian.memLp_two_id
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
:
theorem
ProbabilityTheory.IsGaussian.integrable_id
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
:
theorem
ProbabilityTheory.IsGaussian.integrable_fun_id
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
:
MeasureTheory.Integrable (fun (x : E) => x) μ
theorem
ProbabilityTheory.IsGaussian.integral_dual
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{μ : MeasureTheory.Measure E}
[IsGaussian μ]
(L : NormedSpace.Dual ℝ E)
:
theorem
ProbabilityTheory.HasGaussianLaw.memLp
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → E}
[hX : HasGaussianLaw X P]
{p : ENNReal}
(hp : p ≠ ⊤)
:
MeasureTheory.MemLp X p P
A Gaussian random variable has moments of all orders.
theorem
ProbabilityTheory.HasGaussianLaw.memLp_two
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → E}
[HasGaussianLaw X P]
:
MeasureTheory.MemLp X 2 P
theorem
ProbabilityTheory.HasGaussianLaw.integrable
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[SecondCountableTopology E]
[CompleteSpace E]
[MeasurableSpace E]
[BorelSpace E]
{Ω : Type u_2}
{mΩ : MeasurableSpace Ω}
{P : MeasureTheory.Measure Ω}
{X : Ω → E}
[HasGaussianLaw X P]
: