Documentation

TestingLowerBounds.Kernel.BayesInv

Bayesian inverse (or posterior) #

Main definitions #

Main statements #

Notation #

κ†μ denotes the Bayesian inverse of κ with respect to μ, bayesInv κ μ.

Implementation details #

Bayesian inverse of the kernel κ with respect to the measure μ.

Equations
Instances For

    Bayesian inverse of the kernel κ with respect to the measure μ.

    Equations
    Instances For

      The main property of the Bayesian inverse.

      theorem ProbabilityTheory.compProd_bayesInv' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [StandardBorelSpace α] [Nonempty α] (κ : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] :
      (μ.bind κ).bind (ProbabilityTheory.Kernel.id.prod (ProbabilityTheory.bayesInv κ μ)) = MeasureTheory.Measure.map Prod.swap (μ.bind (ProbabilityTheory.Kernel.id.prod κ))
      theorem ProbabilityTheory.compProd_bayesInv'' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [StandardBorelSpace α] [Nonempty α] (κ : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] :
      ((μ.bind κ).bind (ProbabilityTheory.Kernel.copy β)).bind (ProbabilityTheory.Kernel.id.parallelComp (ProbabilityTheory.bayesInv κ μ)) = (μ.bind (ProbabilityTheory.Kernel.copy α)).bind (κ.parallelComp ProbabilityTheory.Kernel.id)
      theorem ProbabilityTheory.bayesInv_prod_id_comp {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} [StandardBorelSpace α] [Nonempty α] (κ : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] :
      (μ.bind κ).bind ((ProbabilityTheory.bayesInv κ μ).prod ProbabilityTheory.Kernel.id) = μ.compProd κ
      theorem ProbabilityTheory.eq_bayesInv_of_compProd_eq {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [StandardBorelSpace α] [Nonempty α] (η : ProbabilityTheory.Kernel β α) [ProbabilityTheory.IsFiniteKernel η] (h : (μ.bind κ).compProd η = MeasureTheory.Measure.map Prod.swap (μ.compProd κ)) :
      ∀ᵐ (a : β) ∂μ.bind κ, η a = (ProbabilityTheory.bayesInv κ μ) a

      The Bayesian inverse is unique up to a μ ∘ₘ κ-null set.

      The Bayesian inverse is involutive (up to μ-a.e. equality).

      theorem ProbabilityTheory.bayesInv_id {α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace α] [Nonempty α] :
      ∀ᵐ (a : α) ∂μ, (ProbabilityTheory.bayesInv ProbabilityTheory.Kernel.id μ) a = ProbabilityTheory.Kernel.id a

      The Bayesian inverse of the identity kernel is the identity kernel.

      theorem ProbabilityTheory.bayesInv_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {κ : ProbabilityTheory.Kernel α β} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [StandardBorelSpace α] [Nonempty α] [StandardBorelSpace β] [Nonempty β] {η : ProbabilityTheory.Kernel β γ} [ProbabilityTheory.IsFiniteKernel η] :
      ∀ᵐ (c : γ) ∂(μ.bind κ).bind η, (ProbabilityTheory.bayesInv (η.comp κ) μ) c = ((ProbabilityTheory.bayesInv κ μ).comp (ProbabilityTheory.bayesInv η (μ.bind κ))) c

      The Bayesian inverse is contravariant.