Documentation

TestingLowerBounds.FDiv.CondFDivCompProdMeasure

Conditional f-divergence #

theorem ProbabilityTheory.condFDiv_snd'_toReal_eq_ae {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {f : } [MeasurableSpace.CountableOrCountablyGenerated β γ] {ξ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (h_ac : derivAtTop f = ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, (κ (a, b)).AbsolutelyContinuous (η (a, b))) (h_int : ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, MeasureTheory.Integrable (fun (x : γ) => f ((κ (a, b)).rnDeriv (η (a, b)) x).toReal) (η (a, b))) (h_int2 : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b)) (ξ a)) :
∀ᵐ (a : α) ∂μ, (ProbabilityTheory.condFDiv f (κ.snd' a) (η.snd' a) (ξ a)).toReal = ∫ (b : β), (ProbabilityTheory.fDiv f (κ (a, b)) (η (a, b))).toRealξ a
theorem ProbabilityTheory.condFDiv_kernel_snd'_integrable_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {f : } [MeasurableSpace.CountableOrCountablyGenerated (α × β) γ] [MeasureTheory.IsFiniteMeasure μ] {ξ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_ac : derivAtTop f = ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, (κ (a, b)).AbsolutelyContinuous (η (a, b))) (h_int : ∀ᵐ (a : α) ∂μ, ∀ᵐ (b : β) ∂ξ a, MeasureTheory.Integrable (fun (x : γ) => f ((κ (a, b)).rnDeriv (η (a, b)) x).toReal) (η (a, b))) (h_int2 : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (b : β) => ∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b)) (ξ a)) (hf_meas : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_one : f 1 = 0) :
MeasureTheory.Integrable (fun (a : α) => (ProbabilityTheory.condFDiv f (κ.snd' a) (η.snd' a) (ξ a)).toReal) μ MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), |∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b)|ξ a) μ
theorem ProbabilityTheory.condFDiv_kernel_fst'_integrable_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {f : } [MeasurableSpace.CountableOrCountablyGenerated (α × β) γ] {μ : MeasureTheory.Measure β} [MeasureTheory.IsFiniteMeasure μ] {ξ : ProbabilityTheory.Kernel β α} [ProbabilityTheory.IsFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (h_ac : derivAtTop f = ∀ᵐ (b : β) ∂μ, ∀ᵐ (a : α) ∂ξ b, (κ (a, b)).AbsolutelyContinuous (η (a, b))) (h_int : ∀ᵐ (b : β) ∂μ, ∀ᵐ (a : α) ∂ξ b, MeasureTheory.Integrable (fun (x : γ) => f ((κ (a, b)).rnDeriv (η (a, b)) x).toReal) (η (a, b))) (h_int2 : ∀ᵐ (b : β) ∂μ, MeasureTheory.Integrable (fun (a : α) => ∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b)) (ξ b)) (hf_meas : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_one : f 1 = 0) :
MeasureTheory.Integrable (fun (b : β) => (ProbabilityTheory.condFDiv f (κ.fst' b) (η.fst' b) (ξ b)).toReal) μ MeasureTheory.Integrable (fun (b : β) => ∫ (a : α), |∫ (x : γ), f ((κ (a, b)).rnDeriv (η (a, b)) x).toRealη (a, b)|ξ b) μ
theorem ProbabilityTheory.condFDiv_compProd_meas_eq_top {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {f : } [MeasurableSpace.CountableOrCountablyGenerated (α × β) γ] [MeasureTheory.IsFiniteMeasure μ] {ξ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_meas : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_one : f 1 = 0) :
ProbabilityTheory.condFDiv f κ η (μ.compProd ξ) = (¬∀ᵐ (a : α) ∂μ, ProbabilityTheory.condFDiv f (κ.snd' a) (η.snd' a) (ξ a) ) ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.condFDiv f (κ.snd' x) (η.snd' x) (ξ x)).toReal) μ
theorem ProbabilityTheory.condFDiv_compProd_meas {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : MeasureTheory.Measure α} {f : } [MeasurableSpace.CountableOrCountablyGenerated (α × β) γ] [MeasureTheory.IsFiniteMeasure μ] {ξ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsFiniteKernel ξ] {κ : ProbabilityTheory.Kernel (α × β) γ} {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_meas : MeasureTheory.StronglyMeasurable f) (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_one : f 1 = 0) (h_top : ProbabilityTheory.condFDiv f κ η (μ.compProd ξ) ) :
ProbabilityTheory.condFDiv f κ η (μ.compProd ξ) = (∫ (x : α), (ProbabilityTheory.condFDiv f (κ.snd' x) (η.snd' x) (ξ x)).toRealμ)