Documentation

TestingLowerBounds.FDiv.CondFDiv

Conditional f-divergence #

noncomputable def ProbabilityTheory.condFDiv {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (f : ) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) :

Conditional f-divergence.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_not_ae_finite {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } (h : ¬∀ᵐ (a : α) ∂μ, ProbabilityTheory.fDiv f (κ a) (η a) ) :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_not_ae_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h : ¬∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_not_ae_ac {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_top : derivAtTop f = ) (h : ¬∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_not_integrable {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } (hf : ¬MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.fDiv f (κ x) (η x)).toReal) μ) :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_not_integrable' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (hf : ¬MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ) :
    theorem ProbabilityTheory.condFDiv_eq' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } (hf_ae : ∀ᵐ (a : α) ∂μ, ProbabilityTheory.fDiv f (κ a) (η a) ) (hf : MeasureTheory.Integrable (fun (x : α) => (ProbabilityTheory.fDiv f (κ x) (η x)).toReal) μ) :
    ProbabilityTheory.condFDiv f κ η μ = (∫ (x : α), (fun (x : α) => (ProbabilityTheory.fDiv f (κ x) (η x)).toReal) xμ)
    theorem ProbabilityTheory.condFDiv_ne_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) :
    ProbabilityTheory.condFDiv f κ η μ (∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ (derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a))
    theorem ProbabilityTheory.condFDiv_eq_top_iff {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) :
    ProbabilityTheory.condFDiv f κ η μ = (¬∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) ¬MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ derivAtTop f = ¬∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)
    theorem ProbabilityTheory.condFDiv_eq {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (hf_ae : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) (hf : MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ) (h_deriv : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
    ProbabilityTheory.condFDiv f κ η μ = (∫ (x : α), (fun (x : α) => (ProbabilityTheory.fDiv f (κ x) (η x)).toReal) xμ)
    theorem ProbabilityTheory.condFDiv_eq_add {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (hf_ae : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) (hf : MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ) (h_deriv : derivAtTop f = ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
    ProbabilityTheory.condFDiv f κ η μ = (∫ (x : α), (fun (a : α) => ∫ (y : β), f ((κ a).rnDeriv (η a) y).toRealη a) xμ) + (derivAtTop f).toReal * (∫ (x : α), (fun (a : α) => (((κ a).singularPart (η a)) Set.univ).toReal) xμ)
    theorem ProbabilityTheory.condFDiv_of_derivAtTop_eq_top {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [MeasurableSpace.CountableOrCountablyGenerated α β] [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (h_cvx : ConvexOn (Set.Ici 0) f) (hf_ae : ∀ᵐ (a : α) ∂μ, MeasureTheory.Integrable (fun (x : β) => f ((κ a).rnDeriv (η a) x).toReal) (η a)) (hf : MeasureTheory.Integrable (fun (a : α) => ∫ (b : β), f ((κ a).rnDeriv (η a) b).toRealη a) μ) (h_top : derivAtTop f = ) (h_ac : ∀ᵐ (a : α) ∂μ, (κ a).AbsolutelyContinuous (η a)) :
    ProbabilityTheory.condFDiv f κ η μ = (∫ (x : α), (fun (a : α) => ∫ (y : β), f ((κ a).rnDeriv (η a) y).toRealη a) xμ)
    @[simp]
    theorem ProbabilityTheory.condFDiv_self {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : } (κ : ProbabilityTheory.Kernel α β) (μ : MeasureTheory.Measure α) (hf_one : f 1 = 0) [ProbabilityTheory.IsFiniteKernel κ] :
    @[simp]
    theorem ProbabilityTheory.condFDiv_zero_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {η : ProbabilityTheory.Kernel α β} {f : } [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.IsFiniteKernel η] :
    ProbabilityTheory.condFDiv f 0 η μ = (f 0) * (∫ (a : α), ((η a) Set.univ).toRealμ)
    @[simp]
    theorem ProbabilityTheory.condFDiv_zero_measure {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_isEmpty_left {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [IsEmpty α] :
    @[simp]
    theorem ProbabilityTheory.condFDiv_of_isEmpty_right {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [IsEmpty β] [ProbabilityTheory.IsFiniteKernel κ] (hf_one : f 1 = 0) :
    theorem ProbabilityTheory.condFDiv_nonneg {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {f : } [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn (Set.Ici 0) f) (hf_cont : ContinuousOn f (Set.Ici 0)) (hf_one : f 1 = 0) :

    We show that the integrability of the functions used in fDiv f (μ ⊗ₘ κ) (μ ⊗ₘ η) and in condFDiv f κ η μ are equivalent.

    For f-divergences, the divergence between two composition-products with same first measure is equal to the conditional divergence.