Documentation

TestingLowerBounds.Divergences.StatInfo.DPI

fDiv and StatInfo #

Data processing inequality for the f-divergence of statInfoFun.

theorem ProbabilityTheory.fDiv_comp_right_le' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f (μ.bind η) (ν.bind η) ProbabilityTheory.fDiv f μ ν

Data processing inequality for the f-divergence.

theorem ProbabilityTheory.fDiv_fst_le' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {f : } (μ : MeasureTheory.Measure (𝒳 × 𝒳')) (ν : MeasureTheory.Measure (𝒳 × 𝒳')) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
theorem ProbabilityTheory.fDiv_snd_le' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {f : } (μ : MeasureTheory.Measure (𝒳 × 𝒳')) (ν : MeasureTheory.Measure (𝒳 × 𝒳')) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
theorem ProbabilityTheory.le_fDiv_compProd' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel 𝒳 𝒳') (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f μ ν ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η)
theorem ProbabilityTheory.fDiv_compProd_right' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd κ) = ProbabilityTheory.fDiv f μ ν
theorem ProbabilityTheory.fDiv_comp_le_compProd' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {μ : MeasureTheory.Measure 𝒳} {ν : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (κ : ProbabilityTheory.Kernel 𝒳 𝒳') (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f (μ.bind κ) (ν.bind η) ProbabilityTheory.fDiv f (μ.compProd κ) (ν.compProd η)
theorem ProbabilityTheory.fDiv_comp_le_compProd_right' {𝒳 : Type u_1} {𝒳' : Type u_2} {m𝒳 : MeasurableSpace 𝒳} {m𝒳' : MeasurableSpace 𝒳'} {μ : MeasureTheory.Measure 𝒳} {f : } [MeasureTheory.IsFiniteMeasure μ] (κ : ProbabilityTheory.Kernel 𝒳 𝒳') (η : ProbabilityTheory.Kernel 𝒳 𝒳') [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (hf_cvx : ConvexOn Set.univ f) (hf_cont : Continuous f) :
ProbabilityTheory.fDiv f (μ.bind κ) (μ.bind η) ProbabilityTheory.fDiv f (μ.compProd κ) (μ.compProd η)