Documentation

LeanBandits.ForMathlib.CondDistrib

theorem MeasurableSpace.comap_prodMk {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace β} { : MeasurableSpace γ} (X : αβ) (Y : αγ) :
theorem map_trim_comap {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} {f : αβ} (hf : Measurable f) :
theorem ae_map_iff_ae_trim {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} {f : αβ} (hf : Measurable f) {p : βProp} (hp : MeasurableSet {x : β | p x}) :
(∀ᵐ (y : β) MeasureTheory.Measure.map f μ, p y) ∀ᵐ (x : α) μ.trim , p (f x)
theorem Measurable.coe_nat_enat {α : Type u_1} { : MeasurableSpace α} {f : α} (hf : Measurable f) :
Measurable fun (a : α) => (f a)
theorem Measurable.toNat {α : Type u_1} { : MeasurableSpace α} {f : αℕ∞} (hf : Measurable f) :
Measurable fun (a : α) => (f a).toNat
theorem MeasureTheory.Measure.trim_eq_map {α : Type u_1} {m : MeasurableSpace α} {μ : Measure α} {hm : m } :
μ.trim hm = map id μ
theorem MeasureTheory.Measure.comp_congr {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : Measure α} { : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} (h : ∀ᵐ (a : α) μ, κ a = η a) :
μ.bind κ = μ.bind η
theorem MeasureTheory.Measure.copy_comp_map {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : Measure α} { : MeasurableSpace β} {X : αβ} (hX : AEMeasurable X μ) :
(map X μ).bind (ProbabilityTheory.Kernel.copy β) = map (fun (a : α) => (X a, X a)) μ
theorem MeasureTheory.Measure.compProd_deterministic {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : Measure α} { : MeasurableSpace β} {X : αβ} [SFinite μ] (hX : Measurable X) :
μ.compProd (ProbabilityTheory.Kernel.deterministic X hX) = map (fun (a : α) => (a, X a)) μ
theorem MeasureTheory.Measure.trim_comap_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} {μ : Measure α} { : MeasurableSpace β} {X : αβ} (hX : Measurable X) {s : Set β} (hs : MeasurableSet s) :
(μ.trim ) (X ⁻¹' s) = (map X μ) s
theorem MeasureTheory.Measure.ext_prod {α : Type u_7} {β : Type u_8} { : MeasurableSpace α} { : MeasurableSpace β} {μ ν : Measure (α × β)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] (h : ∀ {s : Set α} {t : Set β}, MeasurableSet sMeasurableSet tμ (s ×ˢ t) = ν (s ×ˢ t)) :
μ = ν
theorem MeasureTheory.Measure.ext_prod_iff {α : Type u_7} {β : Type u_8} { : MeasurableSpace α} { : MeasurableSpace β} {μ ν : Measure (α × β)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
μ = ν ∀ {s : Set α} {t : Set β}, MeasurableSet sMeasurableSet tμ (s ×ˢ t) = ν (s ×ˢ t)
theorem MeasureTheory.Measure.ext_prod₃ {α : Type u_7} {β : Type u_8} {γ : Type u_9} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ ν : Measure (α × β × γ)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] (h : ∀ {s : Set α} {t : Set β} {u : Set γ}, MeasurableSet sMeasurableSet tMeasurableSet uμ (s ×ˢ t ×ˢ u) = ν (s ×ˢ t ×ˢ u)) :
μ = ν
theorem MeasureTheory.Measure.ext_prod₃_iff {α : Type u_7} {β : Type u_8} {γ : Type u_9} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ ν : Measure (α × β × γ)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
μ = ν ∀ {s : Set α} {t : Set β} {u : Set γ}, MeasurableSet sMeasurableSet tMeasurableSet uμ (s ×ˢ t ×ˢ u) = ν (s ×ˢ t ×ˢ u)
theorem MeasureTheory.Measure.ext_prod₃_iff' {α : Type u_7} {β : Type u_8} {γ : Type u_9} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ ν : Measure ((α × β) × γ)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
μ = ν ∀ {s : Set α} {t : Set β} {u : Set γ}, MeasurableSet sMeasurableSet tMeasurableSet uμ ((s ×ˢ t) ×ˢ u) = ν ((s ×ˢ t) ×ˢ u)
theorem MeasureTheory.Measure.ext_prod₃' {α : Type u_7} {β : Type u_8} {γ : Type u_9} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ ν : Measure ((α × β) × γ)} [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
(∀ {s : Set α} {t : Set β} {u : Set γ}, MeasurableSet sMeasurableSet tMeasurableSet uμ ((s ×ˢ t) ×ˢ u) = ν ((s ×ˢ t) ×ˢ u))μ = ν

Alias of the reverse direction of MeasureTheory.Measure.ext_prod₃_iff'.

theorem ProbabilityTheory.Kernel.prod_apply_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel α γ} [IsSFiniteKernel κ] [IsSFiniteKernel η] {s : Set β} {t : Set γ} {a : α} :
((κ.prod η) a) (s ×ˢ t) = (κ a) s * (η a) t
theorem ProbabilityTheory.Kernel.compProd_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel (α × β) γ} {ξ : Kernel (α × β × γ) δ} [IsSFiniteKernel κ] [IsSFiniteKernel η] [IsSFiniteKernel ξ] :
theorem ProbabilityTheory.CondIndepFun.symm' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [StandardBorelSpace α] {hm : m } [MeasureTheory.IsFiniteMeasure μ] {f : αβ} {g : αγ} (hfg : CondIndepFun m hm f g μ) :
CondIndepFun m hm g f μ
theorem ProbabilityTheory.Kernel.indepFun_const_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} [IsZeroOrMarkovKernel κ] (c : δ) (X : βγ) :
IndepFun (fun (x : β) => c) X κ μ
theorem ProbabilityTheory.Kernel.indepFun_const_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {κ : Kernel α β} [IsZeroOrMarkovKernel κ] (X : βγ) (c : δ) :
IndepFun X (fun (x : β) => c) κ μ
theorem ProbabilityTheory.condIndepFun_const_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [StandardBorelSpace α] {hm : m } [MeasureTheory.IsFiniteMeasure μ] (c : γ) (X : αβ) :
CondIndepFun m hm (fun (x : α) => c) X μ
theorem ProbabilityTheory.condIndepFun_const_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [StandardBorelSpace α] {hm : m } [MeasureTheory.IsFiniteMeasure μ] (X : αβ) (c : γ) :
CondIndepFun m hm X (fun (x : α) => c) μ
theorem ProbabilityTheory.condIndepFun_of_measurable_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [StandardBorelSpace α] {hm : m } [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} (hX : Measurable X) (hY : Measurable Y) :
CondIndepFun m hm X Y μ
theorem ProbabilityTheory.condIndepFun_of_measurable_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [StandardBorelSpace α] {hm : m } [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} (hX : Measurable X) (hY : Measurable Y) :
CondIndepFun m hm X Y μ

Pretty printer defined by notation3 command.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Two functions are conditionally independent if the two measurable space structures they generate are conditionally independent. For a function f with codomain having measurable space structure m, the generated measurable space structure is m.comap f. See ProbabilityTheory.condIndepFun_iff.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem ProbabilityTheory.condIndepFun_self_left {α : Type u_1} {β : Type u_2} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace δ} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Z : αδ} (hX : Measurable X) (hZ : Measurable Z) :
      Z ⟂ᵢ[Z, hZ; μ] X
      theorem ProbabilityTheory.condIndepFun_self_right {α : Type u_1} {β : Type u_2} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace δ} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Z : αδ} (hX : Measurable X) (hZ : Measurable Z) :
      X ⟂ᵢ[Z, hZ; μ] Z
      theorem ProbabilityTheory.Kernel.IndepFun.of_prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ε : Type u_7} {Ω : Type u_8} { : MeasurableSpace Ω} { : MeasurableSpace ε} {μ : MeasureTheory.Measure Ω} {κ : Kernel Ω α} {X : αβ} {Y : αγ} {T : αε} (h : IndepFun X (fun (ω : α) => (Y ω, T ω)) κ μ) :
      IndepFun X Y κ μ
      theorem ProbabilityTheory.Kernel.IndepFun.of_prod_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ε : Type u_7} {Ω : Type u_8} { : MeasurableSpace Ω} { : MeasurableSpace ε} {μ : MeasureTheory.Measure Ω} {κ : Kernel Ω α} {X : αβ} {Y : αγ} {T : αε} (h : IndepFun (fun (ω : α) => (X ω, T ω)) Y κ μ) :
      IndepFun X Y κ μ
      theorem ProbabilityTheory.CondIndepFun.of_prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {ε : Type u_7} { : MeasurableSpace ε} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} {Z : αδ} {T : αε} (hZ : Measurable Z) (h : X ⟂ᵢ[Z, hZ; μ] fun (ω : α) => (Y ω, T ω)) :
      X ⟂ᵢ[Z, hZ; μ] Y
      theorem ProbabilityTheory.CondIndepFun.of_prod_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} {ε : Type u_7} { : MeasurableSpace ε} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} {Z : αδ} {T : αε} (hZ : Measurable Z) (h : (fun (ω : α) => (X ω, T ω)) ⟂ᵢ[Z, hZ; μ] Y) :
      X ⟂ᵢ[Z, hZ; μ] Y
      theorem ProbabilityTheory.CondIndepFun.prod_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} { : MeasurableSpace δ} [StandardBorelSpace α] [MeasureTheory.IsFiniteMeasure μ] {X : αβ} {Y : αγ} {Z : αδ} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : X ⟂ᵢ[Z, hZ; μ] Y) :
      X ⟂ᵢ[Z, hZ; μ] fun (ω : α) => (Y ω, Z ω)
      theorem ProbabilityTheory.condDistrib_comp_map {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) :
      theorem ProbabilityTheory.condDistrib_congr {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] {X' : αβ} {Y' : αΩ} (hY : Y =ᵐ[μ] Y') (hX : X =ᵐ[μ] X') :
      condDistrib Y X μ = condDistrib Y' X' μ
      theorem ProbabilityTheory.condDistrib_congr_right {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] {X' : αβ} (hX : X =ᵐ[μ] X') :
      condDistrib Y X μ = condDistrib Y X' μ
      theorem ProbabilityTheory.condDistrib_congr_left {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] {Y' : αΩ} (hY : Y =ᵐ[μ] Y') :
      condDistrib Y X μ = condDistrib Y' X μ
      theorem ProbabilityTheory.condDistrib_ae_eq_of_measure_eq_compProd₀ {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) (κ : Kernel β Ω) [IsFiniteKernel κ] ( : MeasureTheory.Measure.map (fun (x : α) => (X x, Y x)) μ = (MeasureTheory.Measure.map X μ).compProd κ) :
      theorem ProbabilityTheory.condDistrib_ae_eq_iff_measure_eq_compProd₀ {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) (κ : Kernel β Ω) [IsFiniteKernel κ] :
      theorem ProbabilityTheory.condDistrib_comp' {α : Type u_1} {β : Type u_2} {Ω : Type u_5} {Ω' : Type u_6} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [MeasurableSpace Ω'] [StandardBorelSpace Ω'] [Nonempty Ω'] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) {f : ΩΩ'} (hf : Measurable f) :
      (condDistrib (f Y) X μ) =ᵐ[MeasureTheory.Measure.map X μ] ((condDistrib Y X μ).map f)
      theorem ProbabilityTheory.condDistrib_comp {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) {f : βΩ} (hf : Measurable f) :
      theorem ProbabilityTheory.condDistrib_const {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (c : Ω) :
      (condDistrib (fun (x : α) => c) X μ) =ᵐ[MeasureTheory.Measure.map X μ] (Kernel.deterministic (fun (x : β) => c) )
      theorem ProbabilityTheory.condDistrib_fst_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) (ν : MeasureTheory.Measure γ) [MeasureTheory.IsProbabilityMeasure ν] :
      (condDistrib (fun (ω : α × γ) => Y ω.1) (fun (ω : α × γ) => X ω.1) (μ.prod ν)) =ᵐ[MeasureTheory.Measure.map X μ] (condDistrib Y X μ)
      theorem ProbabilityTheory.condDistrib_prod_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} {T : αγ} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace β] [Nonempty β] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) (hT : AEMeasurable T μ) :
      (condDistrib (fun (ω : α) => (X ω, Y ω)) T μ) =ᵐ[MeasureTheory.Measure.map T μ] ((condDistrib X T μ).compProd (condDistrib Y (fun (ω : α) => (T ω, X ω)) μ))
      theorem ProbabilityTheory.fst_condDistrib_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} {T : αγ} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace β] [Nonempty β] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) (hT : AEMeasurable T μ) :
      (condDistrib (fun (ω : α) => (X ω, Y ω)) T μ).fst =ᵐ[MeasureTheory.Measure.map T μ] (condDistrib X T μ)
      theorem ProbabilityTheory.condDistrib_of_indepFun {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (h : IndepFun X Y μ) (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) :
      theorem ProbabilityTheory.indepFun_iff_condDistrib_eq_const {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [MeasureTheory.IsFiniteMeasure μ] (hX : AEMeasurable X μ) (hY : AEMeasurable Y μ) :
      theorem ProbabilityTheory.Kernel.indepFun_iff_map_prod_eq_prod_map_map {Ω' : Type u_7} {α : Type u_8} {β : Type u_9} {γ : Type u_10} {mΩ' : MeasurableSpace Ω'} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {X : αβ} {T : αγ} {μ : MeasureTheory.Measure Ω'} [MeasureTheory.IsFiniteMeasure μ] {κ : Kernel Ω' α} [IsFiniteKernel κ] [StandardBorelSpace β] [StandardBorelSpace γ] (hf : Measurable X) (hg : Measurable T) :
      IndepFun X T κ μ (κ.map fun (ω : α) => (X ω, T ω)) =ᵐ[μ] ((κ.map X).prod (κ.map T))
      theorem ProbabilityTheory.Kernel.indepFun_iff_compProd_map_prod_eq_compProd_prod_map_map {Ω' : Type u_7} {α : Type u_8} {β : Type u_9} {γ : Type u_10} {mΩ' : MeasurableSpace Ω'} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {X : αβ} {T : αγ} {μ : MeasureTheory.Measure Ω'} [MeasureTheory.IsFiniteMeasure μ] {κ : Kernel Ω' α} [IsFiniteKernel κ] [StandardBorelSpace β] [StandardBorelSpace γ] (hf : Measurable X) (hg : Measurable T) :
      IndepFun X T κ μ μ.compProd (κ.map fun (ω : α) => (X ω, T ω)) = μ.compProd ((κ.map X).prod (κ.map T))
      theorem ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map {β : Type u_2} {γ : Type u_3} { : MeasurableSpace β} { : MeasurableSpace γ} {α : Type u_7} {m : MeasurableSpace α} [StandardBorelSpace α] {X : αβ} {T : αγ} {hm : m } {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace β] [StandardBorelSpace γ] (hX : Measurable X) (hT : Measurable T) :
      CondIndepFun m hm X T μ ((condExpKernel μ m).map fun (ω : α) => (X ω, T ω)) =ᵐ[μ.trim hm] (((condExpKernel μ m).map X).prod ((condExpKernel μ m).map T))
      theorem ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim {β : Type u_2} {γ : Type u_3} { : MeasurableSpace β} { : MeasurableSpace γ} {α : Type u_7} {m : MeasurableSpace α} [StandardBorelSpace α] {X : αβ} {T : αγ} {hm : m } {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace β] [StandardBorelSpace γ] (hX : Measurable X) (hT : Measurable T) :
      CondIndepFun m hm X T μ MeasureTheory.Measure.map (fun (ω : α) => (ω, X ω, T ω)) μ = (μ.trim hm).bind (Kernel.id.prod (((condExpKernel μ m).map X).prod ((condExpKernel μ m).map T)))
      theorem ProbabilityTheory.condDistrib_apply_ae_eq_condExpKernel_map {β : Type u_2} {γ : Type u_3} { : MeasurableSpace β} { : MeasurableSpace γ} {α : Type u_7} { : MeasurableSpace α} [StandardBorelSpace α] [StandardBorelSpace β] [Nonempty β] {X : αβ} {T : αγ} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hT : Measurable T) {s : Set β} (hs : MeasurableSet s) :
      (fun (a : α) => ((condDistrib X T μ) (T a)) s) =ᵐ[μ] fun (a : α) => (((condExpKernel μ (MeasurableSpace.comap T inferInstance)).map X) a) s
      theorem ProbabilityTheory.condIndepFun_comap_iff_map_prod_eq_prod_condDistrib_prod_condDistrib {β : Type u_2} {γ : Type u_3} {Ω' : Type u_6} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace Ω'] [StandardBorelSpace Ω'] {α : Type u_7} { : MeasurableSpace α} [StandardBorelSpace α] {X : αβ} {T : αγ} {Z : αΩ'} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace β] [StandardBorelSpace γ] [Nonempty β] [Nonempty γ] (hX : Measurable X) (hT : Measurable T) (hZ : Measurable Z) :
      (X ⟂ᵢ[Z, hZ; μ] T) MeasureTheory.Measure.map (fun (ω : α) => (Z ω, X ω, T ω)) μ = (MeasureTheory.Measure.map Z μ).bind (Kernel.id.prod ((condDistrib X Z μ).prod (condDistrib T Z μ)))
      theorem ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft {α : Type u_1} {β : Type u_2} {Ω : Type u_5} {Ω' : Type u_6} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [MeasurableSpace Ω'] [StandardBorelSpace Ω'] {X : αβ} {Y : αΩ} {Z : αΩ'} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace α] [StandardBorelSpace β] [Nonempty β] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) :
      (Y ⟂ᵢ[Z, hZ; μ] X) (condDistrib Y (fun (ω : α) => (X ω, Z ω)) μ) =ᵐ[MeasureTheory.Measure.map (fun (ω : α) => (X ω, Z ω)) μ] (Kernel.prodMkLeft β (condDistrib Y Z μ))
      theorem ProbabilityTheory.Measure.snd_compProd_prodMkLeft {α : Type u_7} {β : Type u_8} {γ : Type u_9} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {μ : MeasureTheory.Measure (α × β)} [MeasureTheory.SFinite μ] {κ : Kernel β γ} [IsSFiniteKernel κ] :
      (μ.compProd (Kernel.prodMkLeft α κ)).snd = μ.snd.bind κ
      theorem ProbabilityTheory.FiniteMeasure.ext_iff_coe {α : Type u_7} { : MeasurableSpace α} {μ ν : MeasureTheory.FiniteMeasure α} :
      μ = ν μ = ν
      theorem ProbabilityTheory.FiniteMeasure.sub_def {α : Type u_1} { : MeasurableSpace α} (μ ν : MeasureTheory.FiniteMeasure α) :
      μ - ν = μ - ν,
      @[simp]
      theorem ProbabilityTheory.FiniteMeasure.toMeasure_sub {α : Type u_1} { : MeasurableSpace α} (μ ν : MeasureTheory.FiniteMeasure α) :
      ↑(μ - ν) = μ - ν
      theorem ProbabilityTheory.Kernel.prodMkLeft_ae_eq_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [IsFiniteKernel κ] [IsFiniteKernel η] {μ : MeasureTheory.Measure (γ × α)} :
      (prodMkLeft γ κ) =ᵐ[μ] (prodMkLeft γ η) κ =ᵐ[μ.snd] η
      theorem ProbabilityTheory.condIndepFun_of_exists_condDistrib_prod_ae_eq_prodMkLeft {α : Type u_1} {β : Type u_2} {Ω : Type u_5} {Ω' : Type u_6} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [MeasurableSpace Ω'] [StandardBorelSpace Ω'] {X : αβ} {Y : αΩ} {Z : αΩ'} [MeasureTheory.IsFiniteMeasure μ] [StandardBorelSpace α] [StandardBorelSpace β] [Nonempty β] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) {η : Kernel Ω' Ω} [IsMarkovKernel η] (h : (condDistrib Y (fun (ω : α) => (X ω, Z ω)) μ) =ᵐ[MeasureTheory.Measure.map (fun (ω : α) => (X ω, Z ω)) μ] (Kernel.prodMkLeft β η)) :
      Y ⟂ᵢ[Z, hZ; μ] X
      theorem ProbabilityTheory.ae_cond_of_forall_mem {α : Type u_1} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (hs : MeasurableSet s) {p : αProp} (h : xs, p x) :
      ∀ᵐ (x : α) μ[|s], p x
      theorem ProbabilityTheory.condDistrib_ae_eq_cond {α : Type u_1} {β : Type u_2} {Ω : Type u_5} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] {X : αβ} {Y : αΩ} [Countable β] [MeasurableSingletonClass β] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) :
      theorem ProbabilityTheory.cond_of_indepFun {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} { : MeasurableSpace γ} {X : αβ} {T : αγ} [MeasureTheory.IsZeroOrProbabilityMeasure μ] (h : IndepFun X T μ) (hX : Measurable X) (hT : Measurable T) {s : Set β} (hs : MeasurableSet s) (hμs : μ (X ⁻¹' s) 0) :
      theorem ProbabilityTheory.cond_of_condIndepFun {α : Type u_1} {β : Type u_2} {Ω : Type u_5} {Ω' : Type u_6} { : MeasurableSpace α} {μ : MeasureTheory.Measure α} { : MeasurableSpace β} [MeasurableSpace Ω] [StandardBorelSpace Ω] [Nonempty Ω] [MeasurableSpace Ω'] [StandardBorelSpace Ω'] {X : αβ} {Y : αΩ} {Z : αΩ'} [StandardBorelSpace α] [StandardBorelSpace β] [Nonempty β] [Countable β] [Countable Ω'] [MeasureTheory.IsZeroOrProbabilityMeasure μ] (hZ : Measurable Z) (h : CondIndepFun (MeasurableSpace.comap Z inferInstance) Y X μ) (hX : Measurable X) (hY : Measurable Y) {b : β} {ω : Ω'} ( : μ (X ⁻¹' {b} Z ⁻¹' {ω}) 0) :