Documentation

LeanBandits.ForMathlib.KernelSub

Kernels substraction #

theorem MeasureTheory.Measure.sub_le_iff_add_of_le {α : Type u_1} { : MeasurableSpace α} {μ ν ξ : Measure α} [IsFiniteMeasure ν] (h_le : ν μ) :
μ - ν ξ μ ξ + ν
theorem MeasureTheory.Measure.sub_le_iff_add {α : Type u_1} { : MeasurableSpace α} {μ ν ξ : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
μ - ν ξ μ ξ + ν
theorem MeasureTheory.Measure.add_sub_of_mutuallySingular {α : Type u_1} { : MeasurableSpace α} {μ ν ξ : Measure α} (h : μ.MutuallySingular ξ) :
μ + (ν - ξ) = μ + ν - ξ
theorem MeasureTheory.Measure.withDensity_sub_aux {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} {f g : αENNReal} [IsFiniteMeasure (μ.withDensity g)] (hg : Measurable g) (hgf : g ≤ᶠ[ae μ] f) :
μ.withDensity f - μ.withDensity g = μ.withDensity (f - g)
theorem MeasureTheory.Measure.withDensity_sub {α : Type u_1} { : MeasurableSpace α} {μ : Measure α} {f g : αENNReal} [IsFiniteMeasure (μ.withDensity g)] (hf : Measurable f) (hg : Measurable g) :
μ.withDensity f - μ.withDensity g = μ.withDensity (f - g)
theorem MeasureTheory.Measure.sub_apply_eq_rnDeriv_add_singularPart {α : Type u_1} { : MeasurableSpace α} {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν] (s : Set α) :
(μ - ν) s = (ν.withDensity fun (a : α) => μ.rnDeriv ν a - 1) s + (μ.singularPart ν) s
Equations
  • One or more equations did not get rendered due to their size.
theorem ProbabilityTheory.Kernel.sub_def {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] :
κ - η = if h : IsSFiniteKernel κ IsSFiniteKernel η then have this := ; have this_1 := ; (η.withDensity fun (a : α) => κ.rnDeriv η a - 1) + κ.singularPart η else 0
@[simp]
theorem ProbabilityTheory.Kernel.sub_of_not_isSFiniteKernel_left {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] (h : ¬IsSFiniteKernel κ) :
κ - η = 0
@[simp]
theorem ProbabilityTheory.Kernel.sub_of_not_isSFiniteKernel_right {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] (h : ¬IsSFiniteKernel η) :
κ - η = 0
theorem ProbabilityTheory.Kernel.sub_of_isSFiniteKernel {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [IsSFiniteKernel κ] [IsSFiniteKernel η] [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] :
κ - η = (η.withDensity fun (a : α) => κ.rnDeriv η a - 1) + κ.singularPart η
theorem ProbabilityTheory.Kernel.sub_apply_eq_rnDeriv_add_singularPart {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] [IsSFiniteKernel κ] [IsSFiniteKernel η] (a : α) :
(κ - η) a = (η.withDensity fun (a : α) => κ.rnDeriv η a - 1) a + (κ.singularPart η) a
theorem ProbabilityTheory.Kernel.sub_apply {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] [IsFiniteKernel κ] [IsFiniteKernel η] (a : α) :
(κ - η) a = κ a - η a
theorem ProbabilityTheory.Kernel.le_iff {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} (κ η : Kernel α β) :
κ η ∀ (a : α), κ a η a
theorem ProbabilityTheory.Kernel.sub_le_self {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] [IsFiniteKernel κ] [IsFiniteKernel η] :
κ - η κ
theorem ProbabilityTheory.Kernel.sub_apply_eq_zero_iff_le {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] [IsFiniteKernel κ] [IsFiniteKernel η] (a : α) :
(κ - η) a = 0 κ a η a
theorem ProbabilityTheory.Kernel.sub_eq_zero_iff_le {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} [MeasurableSpace.CountableOrCountablyGenerated α β] {κ η : Kernel α β} [(η : Kernel α β) → Decidable (IsSFiniteKernel η)] [IsFiniteKernel κ] [IsFiniteKernel η] :
κ - η = 0 κ η