Kernels substraction #
theorem
MeasureTheory.Measure.sub_le_iff_add_of_le
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν ξ : Measure α}
[IsFiniteMeasure ν]
(h_le : ν ≤ μ)
:
theorem
MeasureTheory.Measure.sub_le_iff_add
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν ξ : Measure α}
[IsFiniteMeasure μ]
[IsFiniteMeasure ν]
:
theorem
MeasureTheory.Measure.add_sub_of_mutuallySingular
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν ξ : Measure α}
(h : μ.MutuallySingular ξ)
:
theorem
MeasureTheory.Measure.withDensity_sub_aux
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : Measure α}
{f g : α → ENNReal}
[IsFiniteMeasure (μ.withDensity g)]
(hg : Measurable g)
(hgf : g ≤ᶠ[ae μ] f)
:
theorem
MeasureTheory.Measure.withDensity_sub
{α : Type u_1}
{mα : MeasurableSpace α}
{μ : Measure α}
{f g : α → ENNReal}
[IsFiniteMeasure (μ.withDensity g)]
(hf : Measurable f)
(hg : Measurable g)
:
theorem
MeasureTheory.Measure.sub_apply_eq_rnDeriv_add_singularPart
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
[IsFiniteMeasure μ]
[IsFiniteMeasure ν]
(s : Set α)
:
noncomputable instance
ProbabilityTheory.Kernel.instSubOfDecidableIsSFiniteKernel_leanBandits
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
ProbabilityTheory.Kernel.sub_def
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
:
κ - η = if h : IsSFiniteKernel κ ∧ IsSFiniteKernel η then
have this := ⋯;
have this_1 := ⋯;
(η.withDensity fun (a : α) => κ.rnDeriv η a - 1) + κ.singularPart η
else 0
@[simp]
theorem
ProbabilityTheory.Kernel.sub_of_not_isSFiniteKernel_left
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
(h : ¬IsSFiniteKernel κ)
:
@[simp]
theorem
ProbabilityTheory.Kernel.sub_of_not_isSFiniteKernel_right
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
(h : ¬IsSFiniteKernel η)
:
theorem
ProbabilityTheory.Kernel.sub_of_isSFiniteKernel
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[IsSFiniteKernel κ]
[IsSFiniteKernel η]
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
:
theorem
ProbabilityTheory.Kernel.sub_apply_eq_rnDeriv_add_singularPart
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsSFiniteKernel κ]
[IsSFiniteKernel η]
(a : α)
:
theorem
ProbabilityTheory.Kernel.sub_apply
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsFiniteKernel κ]
[IsFiniteKernel η]
(a : α)
:
theorem
ProbabilityTheory.Kernel.le_iff
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
(κ η : Kernel α β)
:
theorem
ProbabilityTheory.Kernel.sub_le_self
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsFiniteKernel κ]
[IsFiniteKernel η]
:
instance
ProbabilityTheory.Kernel.instIsFiniteKernelHSub_leanBandits
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsFiniteKernel κ]
[IsFiniteKernel η]
:
IsFiniteKernel (κ - η)
theorem
ProbabilityTheory.Kernel.sub_apply_eq_zero_iff_le
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsFiniteKernel κ]
[IsFiniteKernel η]
(a : α)
:
theorem
ProbabilityTheory.Kernel.sub_eq_zero_iff_le
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
{κ η : Kernel α β}
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
[IsFiniteKernel κ]
[IsFiniteKernel η]
:
theorem
ProbabilityTheory.Kernel.measurableSet_eq_zero
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
(κ : Kernel α β)
[IsFiniteKernel κ]
:
theorem
ProbabilityTheory.Kernel.measurableSet_eq
{α : Type u_1}
{β : Type u_2}
{mα : MeasurableSpace α}
{mβ : MeasurableSpace β}
[MeasurableSpace.CountableOrCountablyGenerated α β]
[(η : Kernel α β) → Decidable (IsSFiniteKernel η)]
(κ η : Kernel α β)
[IsFiniteKernel κ]
[IsFiniteKernel η]
: