Documentation

Mathlib.Probability.Independence.Conditional

Conditional Independence #

We define conditional independence of sets/σ-algebras/functions with respect to a σ-algebra.

Two σ-algebras m₁ and m₂ are conditionally independent given a third σ-algebra m' if for all m₁-measurable sets t₁ and m₂-measurable sets t₂, μ⟦t₁ ∩ t₂ | m'⟧ =ᵐ[μ] μ⟦t₁ | m'⟧ * μ⟦t₂ | m'⟧.

On standard Borel spaces, the conditional expectation with respect to m' defines a kernel ProbabilityTheory.condExpKernel, and the definition above is equivalent to ∀ᵐ ω ∂μ, condExpKernel μ m' ω (t₁ ∩ t₂) = condExpKernel μ m' ω t₁ * condExpKernel μ m' ω t₂. We use this property as the definition of conditional independence.

Main definitions #

We provide four definitions of conditional independence:

Additionally, we provide four corresponding statements for two measurable space structures (resp. sets of sets, sets, functions) instead of a family. These properties are denoted by the same names as for a family, but without the starting i, for example CondIndepFun is the version of iCondIndepFun for two functions.

Main statements #

Notation #

These notations are scoped in the ProbabilityTheory namespace.

Implementation notes #

The definitions of conditional independence in this file are a particular case of independence with respect to a kernel and a measure, as defined in the file Probability/Independence/Kernel.lean. The kernel used is ProbabilityTheory.condExpKernel.

def ProbabilityTheory.iCondIndepSets {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (π : ιSet (Set Ω)) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

A family of sets of sets π : ι → Set (Set Ω) is conditionally independent given m' with respect to a measure μ if for any finite set of indices s = {i_1, ..., i_n}, for any sets f i_1 ∈ π i_1, ..., f i_n ∈ π i_n, then μ⟦⋂ i in s, f i | m'⟧ =ᵐ[μ] ∏ i ∈ s, μ⟦f i | m'⟧. See ProbabilityTheory.iCondIndepSets_iff. It will be used for families of pi_systems.

Equations
Instances For
    def ProbabilityTheory.CondIndepSets {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s1 s2 : Set (Set Ω)) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

    Two sets of sets s₁, s₂ are conditionally independent given m' with respect to a measure μ if for any sets t₁ ∈ s₁, t₂ ∈ s₂, then μ⟦t₁ ∩ t₂ | m'⟧ =ᵐ[μ] μ⟦t₁ | m'⟧ * μ⟦t₂ | m'⟧. See ProbabilityTheory.condIndepSets_iff.

    Equations
    Instances For
      def ProbabilityTheory.iCondIndep {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (m : ιMeasurableSpace Ω) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

      A family of measurable space structures (i.e. of σ-algebras) is conditionally independent given m' with respect to a measure μ (typically defined on a finer σ-algebra) if the family of sets of measurable sets they define is independent. m : ι → MeasurableSpace Ω is conditionally independent given m' with respect to measure μ if for any finite set of indices s = {i_1, ..., i_n}, for any sets f i_1 ∈ m i_1, ..., f i_n ∈ m i_n, then μ⟦⋂ i in s, f i | m'⟧ =ᵐ[μ] ∏ i ∈ s, μ⟦f i | m'⟧ . See ProbabilityTheory.iCondIndep_iff.

      Equations
      Instances For
        def ProbabilityTheory.CondIndep {Ω : Type u_1} (m' m₁ m₂ : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

        Two measurable space structures (or σ-algebras) m₁, m₂ are conditionally independent given m' with respect to a measure μ (defined on a third σ-algebra) if for any sets t₁ ∈ m₁, t₂ ∈ m₂, μ⟦t₁ ∩ t₂ | m'⟧ =ᵐ[μ] μ⟦t₁ | m'⟧ * μ⟦t₂ | m'⟧. See ProbabilityTheory.condIndep_iff.

        Equations
        Instances For
          def ProbabilityTheory.iCondIndepSet {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s : ιSet Ω) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

          A family of sets is conditionally independent if the family of measurable space structures they generate is conditionally independent. For a set s, the generated measurable space has measurable sets ∅, s, sᶜ, univ. See ProbabilityTheory.iCondIndepSet_iff.

          Equations
          Instances For
            def ProbabilityTheory.CondIndepSet {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s t : Set Ω) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

            Two sets are conditionally independent if the two measurable space structures they generate are conditionally independent. For a set s, the generated measurable space structure has measurable sets ∅, s, sᶜ, univ. See ProbabilityTheory.condIndepSet_iff.

            Equations
            Instances For
              def ProbabilityTheory.iCondIndepFun {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : ιType u_3} [m : (x : ι) → MeasurableSpace (β x)] (f : (x : ι) → Ωβ x) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

              A family of functions defined on the same space Ω and taking values in possibly different spaces, each with a measurable space structure, is conditionally independent if the family of measurable space structures they generate on Ω is conditionally independent. For a function g with codomain having measurable space structure m, the generated measurable space structure is m.comap g. See ProbabilityTheory.iCondIndepFun_iff.

              Equations
              Instances For
                def ProbabilityTheory.CondIndepFun {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : Type u_3} {γ : Type u_4} [MeasurableSpace β] [MeasurableSpace γ] (f : Ωβ) (g : Ωγ) (μ : MeasureTheory.Measure Ω := by volume_tac) [MeasureTheory.IsFiniteMeasure μ] :

                Two functions are conditionally independent if the two measurable space structures they generate are conditionally independent. For a function f with codomain having measurable space structure m, the generated measurable space structure is m.comap f. See ProbabilityTheory.condIndepFun_iff. We use the notation X ⟂ᵢ[Z, hZ; μ] Y to write that X and Y are conditionally independent given (the σ-algebra generated by) Z (scoped in ProbabilityTheory).

                Equations
                Instances For

                  Two functions are conditionally independent if the two measurable space structures they generate are conditionally independent. For a function f with codomain having measurable space structure m, the generated measurable space structure is m.comap f. See ProbabilityTheory.condIndepFun_iff. We use the notation X ⟂ᵢ[Z, hZ; μ] Y to write that X and Y are conditionally independent given (the σ-algebra generated by) Z (scoped in ProbabilityTheory).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Two functions are conditionally independent if the two measurable space structures they generate are conditionally independent. For a function f with codomain having measurable space structure m, the generated measurable space structure is m.comap f. See ProbabilityTheory.condIndepFun_iff. We use the notation X ⟂ᵢ[Z, hZ; μ] Y to write that X and Y are conditionally independent given (the σ-algebra generated by) Z (scoped in ProbabilityTheory).

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem ProbabilityTheory.iCondIndepSets_iff {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (π : ιSet (Set Ω)) ( : ∀ (i : ι), sπ i, MeasurableSet s) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepSets m' hm' π μ ∀ (s : Finset ι) {f : ιSet Ω}, (∀ is, f i π i)μ[(⋂ is, f i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] is, μ[(f i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndepSets_iff {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s1 s2 : Set (Set Ω)) (hs1 : ss1, MeasurableSet s) (hs2 : ss2, MeasurableSet s) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndepSets m' hm' s1 s2 μ ∀ (t1 t2 : Set Ω), t1 s1t2 s2μ[(t1 t2).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] μ[t1.indicator fun (ω : Ω) => 1|m'] * μ[t2.indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.iCondIndepSets_singleton_iff {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s : ιSet Ω) ( : ∀ (i : ι), MeasurableSet (s i)) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepSets m' hm' (fun (i : ι) => {s i}) μ ∀ (S : Finset ι), μ[(⋂ iS, s i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] iS, μ[(s i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndepSets_singleton_iff {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s t : Set Ω} (hs : MeasurableSet s) (ht : MeasurableSet t) :
                      CondIndepSets m' hm' {s} {t} μ μ[(s t).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m'] * μ[t.indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.iCondIndep_iff_iCondIndepSets {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (m : ιMeasurableSpace Ω) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndep m' hm' m μ iCondIndepSets m' hm' (fun (x : ι) => {s : Set Ω | MeasurableSet s}) μ
                      theorem ProbabilityTheory.iCondIndep_iff {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (m : ιMeasurableSpace Ω) (hm : ∀ (i : ι), m i ) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndep m' hm' m μ ∀ (s : Finset ι) {f : ιSet Ω}, (∀ is, MeasurableSet (f i))μ[(⋂ is, f i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] is, μ[(f i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndep_iff_condIndepSets {Ω : Type u_1} (m' m₁ m₂ : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndep m' m₁ m₂ hm' μ CondIndepSets m' hm' {s : Set Ω | MeasurableSet s} {s : Set Ω | MeasurableSet s} μ
                      theorem ProbabilityTheory.condIndep_iff {Ω : Type u_1} (m' m₁ m₂ : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (hm₁ : m₁ ) (hm₂ : m₂ ) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndep m' m₁ m₂ hm' μ ∀ (t1 t2 : Set Ω), MeasurableSet t1MeasurableSet t2μ[(t1 t2).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] μ[t1.indicator fun (ω : Ω) => 1|m'] * μ[t2.indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.iCondIndepSet_iff_iCondIndep {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s : ιSet Ω) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepSet m' hm' s μ iCondIndep m' hm' (fun (i : ι) => MeasurableSpace.generateFrom {s i}) μ
                      theorem ProbabilityTheory.iCondIndepSet_iff_iCondIndepSets_singleton {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s : ιSet Ω) (hs : ∀ (i : ι), MeasurableSet (s i)) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepSet m' hm' s μ iCondIndepSets m' hm' (fun (i : ι) => {s i}) μ
                      theorem ProbabilityTheory.iCondIndepSet_iff {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s : ιSet Ω) (hs : ∀ (i : ι), MeasurableSet (s i)) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepSet m' hm' s μ ∀ (S : Finset ι), μ[(⋂ iS, s i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] iS, μ[(s i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndepSet_iff_condIndepSets_singleton {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {s t : Set Ω} (hs_meas : MeasurableSet s) (ht_meas : MeasurableSet t) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndepSet m' hm' s t μ CondIndepSets m' hm' {s} {t} μ
                      theorem ProbabilityTheory.condIndepSet_iff {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) (s t : Set Ω) (hs : MeasurableSet s) (ht : MeasurableSet t) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndepSet m' hm' s t μ μ[(s t).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m'] * μ[t.indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.iCondIndepFun_iff_iCondIndep {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : ιType u_3} (m : (x : ι) → MeasurableSpace (β x)) (f : (x : ι) → Ωβ x) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepFun m' hm' f μ iCondIndep m' hm' (fun (x : ι) => MeasurableSpace.comap (f x) (m x)) μ
                      theorem ProbabilityTheory.iCondIndepFun_iff {Ω : Type u_1} {ι : Type u_2} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : ιType u_3} (m : (x : ι) → MeasurableSpace (β x)) (f : (x : ι) → Ωβ x) (hf : ∀ (i : ι), Measurable (f i)) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      iCondIndepFun m' hm' f μ ∀ (s : Finset ι) {g : ιSet Ω}, (∀ is, MeasurableSet (g i))μ[(⋂ is, g i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] is, μ[(g i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndepFun_iff_condIndep {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : Type u_3} {γ : Type u_4} [ : MeasurableSpace β] [ : MeasurableSpace γ] (f : Ωβ) (g : Ωγ) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndepFun m' hm' f g μ CondIndep m' (MeasurableSpace.comap f ) (MeasurableSpace.comap g ) hm' μ
                      theorem ProbabilityTheory.condIndepFun_iff {Ω : Type u_1} (m' : MeasurableSpace Ω) { : MeasurableSpace Ω} [StandardBorelSpace Ω] (hm' : m' ) {β : Type u_3} {γ : Type u_4} [ : MeasurableSpace β] [ : MeasurableSpace γ] (f : Ωβ) (g : Ωγ) (hf : Measurable f) (hg : Measurable g) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndepFun m' hm' f g μ ∀ (t1 t2 : Set Ω), MeasurableSet t1MeasurableSet t2μ[(t1 t2).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] μ[t1.indicator fun (ω : Ω) => 1|m'] * μ[t2.indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.CondIndepSets.symm {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s₂ : Set (Set Ω)} (h : CondIndepSets m' hm' s₁ s₂ μ) :
                      CondIndepSets m' hm' s₂ s₁ μ
                      theorem ProbabilityTheory.condIndepSets_of_condIndepSets_of_le_left {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s₂ s₃ : Set (Set Ω)} (h_indep : CondIndepSets m' hm' s₁ s₂ μ) (h31 : s₃ s₁) :
                      CondIndepSets m' hm' s₃ s₂ μ
                      theorem ProbabilityTheory.condIndepSets_of_condIndepSets_of_le_right {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s₂ s₃ : Set (Set Ω)} (h_indep : CondIndepSets m' hm' s₁ s₂ μ) (h32 : s₃ s₂) :
                      CondIndepSets m' hm' s₁ s₃ μ
                      theorem ProbabilityTheory.CondIndepSets.union {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s₂ s' : Set (Set Ω)} (h₁ : CondIndepSets m' hm' s₁ s' μ) (h₂ : CondIndepSets m' hm' s₂ s' μ) :
                      CondIndepSets m' hm' (s₁ s₂) s' μ
                      @[simp]
                      theorem ProbabilityTheory.CondIndepSets.union_iff {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s₂ s' : Set (Set Ω)} :
                      CondIndepSets m' hm' (s₁ s₂) s' μ CondIndepSets m' hm' s₁ s' μ CondIndepSets m' hm' s₂ s' μ
                      theorem ProbabilityTheory.CondIndepSets.iUnion {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} {s' : Set (Set Ω)} (hyp : ∀ (n : ι), CondIndepSets m' hm' (s n) s' μ) :
                      CondIndepSets m' hm' (⋃ (n : ι), s n) s' μ
                      theorem ProbabilityTheory.CondIndepSets.bUnion {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} {s' : Set (Set Ω)} {u : Set ι} (hyp : nu, CondIndepSets m' hm' (s n) s' μ) :
                      CondIndepSets m' hm' (⋃ nu, s n) s' μ
                      theorem ProbabilityTheory.CondIndepSets.inter {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s₁ s' : Set (Set Ω)} (s₂ : Set (Set Ω)) (h₁ : CondIndepSets m' hm' s₁ s' μ) :
                      CondIndepSets m' hm' (s₁ s₂) s' μ
                      theorem ProbabilityTheory.CondIndepSets.iInter {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} {s' : Set (Set Ω)} (h : ∃ (n : ι), CondIndepSets m' hm' (s n) s' μ) :
                      CondIndepSets m' hm' (⋂ (n : ι), s n) s' μ
                      theorem ProbabilityTheory.CondIndepSets.bInter {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} {s' : Set (Set Ω)} {u : Set ι} (h : nu, CondIndepSets m' hm' (s n) s' μ) :
                      CondIndepSets m' hm' (⋂ nu, s n) s' μ
                      theorem ProbabilityTheory.CondIndep.symm {Ω : Type u_1} {m' m₁ m₂ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (h : CondIndep m' m₁ m₂ hm' μ) :
                      CondIndep m' m₂ m₁ hm' μ
                      theorem ProbabilityTheory.condIndep_of_condIndep_of_le_left {Ω : Type u_1} {m' m₁ m₂ m₃ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndep m' m₁ m₂ hm' μ) (h31 : m₃ m₁) :
                      CondIndep m' m₃ m₂ hm' μ
                      theorem ProbabilityTheory.condIndep_of_condIndep_of_le_right {Ω : Type u_1} {m' m₁ m₂ m₃ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndep m' m₁ m₂ hm' μ) (h32 : m₃ m₂) :
                      CondIndep m' m₁ m₃ hm' μ

                      Deducing CondIndep from iCondIndep #

                      theorem ProbabilityTheory.iCondIndepSets.condIndepSets {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} (h_indep : iCondIndepSets m' hm' s μ) {i j : ι} (hij : i j) :
                      CondIndepSets m' hm' (s i) (s j) μ
                      theorem ProbabilityTheory.iCondIndep.condIndep {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : ιMeasurableSpace Ω} (h_indep : iCondIndep m' hm' m μ) {i j : ι} (hij : i j) :
                      CondIndep m' (m i) (m j) hm' μ
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_3} {m : (x : ι) → MeasurableSpace (β x)} {f : (i : ι) → Ωβ i} (hf_Indep : iCondIndepFun m' hm' f μ) {i j : ι} (hij : i j) :
                      CondIndepFun m' hm' (f i) (f j) μ

                      π-system lemma #

                      Conditional independence of measurable spaces is equivalent to conditional independence of generating π-systems.

                      Conditional independence of σ-algebras implies conditional independence of #

                      generating π-systems

                      theorem ProbabilityTheory.iCondIndep.iCondIndepSets {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : ιMeasurableSpace Ω} {s : ιSet (Set Ω)} (hms : ∀ (n : ι), m n = MeasurableSpace.generateFrom (s n)) (h_indep : iCondIndep m' hm' m μ) :

                      Conditional independence of generating π-systems implies conditional independence of #

                      σ-algebras

                      theorem ProbabilityTheory.CondIndepSets.condIndep {Ω : Type u_1} {m' m₁ m₂ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {p1 p2 : Set (Set Ω)} (h1 : m₁ ) (h2 : m₂ ) (hp1 : IsPiSystem p1) (hp2 : IsPiSystem p2) (hpm1 : m₁ = MeasurableSpace.generateFrom p1) (hpm2 : m₂ = MeasurableSpace.generateFrom p2) (hyp : CondIndepSets m' hm' p1 p2 μ) :
                      CondIndep m' m₁ m₂ hm' μ
                      theorem ProbabilityTheory.CondIndepSets.condIndep' {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {p1 p2 : Set (Set Ω)} (hp1m : sp1, MeasurableSet s) (hp2m : sp2, MeasurableSet s) (hp1 : IsPiSystem p1) (hp2 : IsPiSystem p2) (hyp : CondIndepSets m' hm' p1 p2 μ) :
                      theorem ProbabilityTheory.condIndepSets_piiUnionInter_of_disjoint {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet (Set Ω)} {S T : Set ι} (h_indep : iCondIndepSets m' hm' s μ) (hST : Disjoint S T) :
                      theorem ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_of_disjoint {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (hs : iCondIndepSet m' hm' s μ) (S T : Set ι) (hST : Disjoint S T) :
                      CondIndep m' (MeasurableSpace.generateFrom {t : Set Ω | nS, s n = t}) (MeasurableSpace.generateFrom {t : Set Ω | kT, s k = t}) hm' μ
                      theorem ProbabilityTheory.condIndep_iSup_of_disjoint {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : ιMeasurableSpace Ω} (h_le : ∀ (i : ι), m i ) (h_indep : iCondIndep m' hm' m μ) {S T : Set ι} (hST : Disjoint S T) :
                      CondIndep m' (⨆ iS, m i) (⨆ iT, m i) hm' μ
                      theorem ProbabilityTheory.condIndep_iSup_of_directed_le {Ω : Type u_1} {ι : Type u_2} {m' m₁ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : ιMeasurableSpace Ω} (h_indep : ∀ (i : ι), CondIndep m' (m i) m₁ hm' μ) (h_le : ∀ (i : ι), m i ) (h_le' : m₁ ) (hm : Directed (fun (x1 x2 : MeasurableSpace Ω) => x1 x2) m) :
                      CondIndep m' (⨆ (i : ι), m i) m₁ hm' μ
                      theorem ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_lt {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [Preorder ι] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (hs : iCondIndepSet m' hm' s μ) (i : ι) :
                      theorem ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_le {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [Preorder ι] {s : ιSet Ω} (hsm : ∀ (n : ι), MeasurableSet (s n)) (hs : iCondIndepSet m' hm' s μ) (i : ι) {k : ι} (hk : i < k) :
                      theorem ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_le_nat {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : Set Ω} (hsm : ∀ (n : ), MeasurableSet (s n)) (hs : iCondIndepSet m' hm' s μ) (n : ) :
                      CondIndep m' (MeasurableSpace.generateFrom {s (n + 1)}) (MeasurableSpace.generateFrom {t : Set Ω | kn, s k = t}) hm' μ
                      theorem ProbabilityTheory.condIndep_iSup_of_monotone {Ω : Type u_1} {ι : Type u_2} {m' m₁ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [SemilatticeSup ι] {m : ιMeasurableSpace Ω} (h_indep : ∀ (i : ι), CondIndep m' (m i) m₁ hm' μ) (h_le : ∀ (i : ι), m i ) (h_le' : m₁ ) (hm : Monotone m) :
                      CondIndep m' (⨆ (i : ι), m i) m₁ hm' μ
                      theorem ProbabilityTheory.condIndep_iSup_of_antitone {Ω : Type u_1} {ι : Type u_2} {m' m₁ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [SemilatticeInf ι] {m : ιMeasurableSpace Ω} (h_indep : ∀ (i : ι), CondIndep m' (m i) m₁ hm' μ) (h_le : ∀ (i : ι), m i ) (h_le' : m₁ ) (hm : Antitone m) :
                      CondIndep m' (⨆ (i : ι), m i) m₁ hm' μ
                      theorem ProbabilityTheory.iCondIndepSets.piiUnionInter_of_notMem {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {π : ιSet (Set Ω)} {a : ι} {S : Finset ι} (hp_ind : iCondIndepSets m' hm' π μ) (haS : aS) :
                      CondIndepSets m' hm' (piiUnionInter π S) (π a) μ
                      @[deprecated ProbabilityTheory.iCondIndepSets.piiUnionInter_of_notMem (since := "2025-05-23")]
                      theorem ProbabilityTheory.iCondIndepSets.piiUnionInter_of_not_mem {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {π : ιSet (Set Ω)} {a : ι} {S : Finset ι} (hp_ind : iCondIndepSets m' hm' π μ) (haS : aS) :
                      CondIndepSets m' hm' (piiUnionInter π S) (π a) μ

                      Alias of ProbabilityTheory.iCondIndepSets.piiUnionInter_of_notMem.

                      theorem ProbabilityTheory.iCondIndepSets.iCondIndep {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (m : ιMeasurableSpace Ω) (h_le : ∀ (i : ι), m i ) (π : ιSet (Set Ω)) (h_pi : ∀ (n : ι), IsPiSystem (π n)) (h_generate : ∀ (i : ι), m i = MeasurableSpace.generateFrom (π i)) (h_ind : iCondIndepSets m' hm' π μ) :

                      The σ-algebras generated by conditionally independent pi-systems are conditionally independent.

                      Conditional independence of measurable sets #

                      theorem ProbabilityTheory.CondIndepSets.condIndepSet_of_mem {Ω : Type u_1} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {s t : Set Ω} (S T : Set (Set Ω)) (hs : s S) (ht : t T) (hs_meas : MeasurableSet s) (ht_meas : MeasurableSet t) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndepSets m' hm' S T μ) :
                      CondIndepSet m' hm' s t μ
                      theorem ProbabilityTheory.CondIndep.condIndepSet_of_measurableSet {Ω : Type u_1} {m' m₁ m₂ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (h_indep : CondIndep m' m₁ m₂ hm' μ) {s t : Set Ω} (hs : MeasurableSet s) (ht : MeasurableSet t) :
                      CondIndepSet m' hm' s t μ
                      theorem ProbabilityTheory.condIndep_iff_forall_condIndepSet {Ω : Type u_1} {m' m₁ m₂ : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] :
                      CondIndep m' m₁ m₂ hm' μ ∀ (s t : Set Ω), MeasurableSet sMeasurableSet tCondIndepSet m' hm' s t μ

                      Conditional independence of random variables #

                      theorem ProbabilityTheory.condIndepFun_iff_condExp_inter_preimage_eq_mul {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (hf : Measurable f) (hg : Measurable g) :
                      CondIndepFun m' hm' f g μ ∀ (s : Set β) (t : Set β'), MeasurableSet sMeasurableSet tμ[(f ⁻¹' s g ⁻¹' t).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] fun (ω : Ω) => μ[(f ⁻¹' s).indicator fun (ω : Ω) => 1|m'] ω * μ[(g ⁻¹' t).indicator fun (ω : Ω) => 1|m'] ω
                      theorem ProbabilityTheory.iCondIndepFun_iff_condExp_inter_preimage_eq_mul {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_5} (m : (x : ι) → MeasurableSpace (β x)) (f : (i : ι) → Ωβ i) (hf : ∀ (i : ι), Measurable (f i)) :
                      iCondIndepFun m' hm' f μ ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ iS, MeasurableSet (sets i))μ[(⋂ iS, f i ⁻¹' sets i).indicator fun (ω : Ω) => 1|m'] =ᵐ[μ] iS, μ[(f i ⁻¹' sets i).indicator fun (ω : Ω) => 1|m']
                      theorem ProbabilityTheory.condIndepFun_iff_condIndepSet_preimage {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (hf : Measurable f) (hg : Measurable g) :
                      CondIndepFun m' hm' f g μ ∀ (s : Set β) (t : Set β'), MeasurableSet sMeasurableSet tCondIndepSet m' hm' (f ⁻¹' s) (g ⁻¹' t) μ
                      theorem ProbabilityTheory.CondIndepFun.symm {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {f : Ωβ} {g : Ωβ'} (hfg : CondIndepFun m' hm' f g μ) :
                      CondIndepFun m' hm' g f μ
                      theorem ProbabilityTheory.CondIndepFun.comp {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {γ : Type u_5} {γ' : Type u_6} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} {_mγ : MeasurableSpace γ} {_mγ' : MeasurableSpace γ'} {φ : βγ} {ψ : β'γ'} (hfg : CondIndepFun m' hm' f g μ) ( : Measurable φ) ( : Measurable ψ) :
                      CondIndepFun m' hm' (φ f) (ψ g) μ
                      theorem ProbabilityTheory.condIndepFun_const_left {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (c : β) (X : Ωβ') :
                      CondIndepFun m' hm' (fun (x : Ω) => c) X μ
                      theorem ProbabilityTheory.condIndepFun_const_right {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (X : Ωβ) (c : β') :
                      CondIndepFun m' hm' X (fun (x : Ω) => c) μ
                      theorem ProbabilityTheory.CondIndepFun.neg_right {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} [Neg β'] [MeasurableNeg β'] (hfg : CondIndepFun m' hm' f g μ) :
                      CondIndepFun m' hm' f (-g) μ
                      theorem ProbabilityTheory.CondIndepFun.neg_left {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} [Neg β] [MeasurableNeg β] (hfg : CondIndepFun m' hm' f g μ) :
                      CondIndepFun m' hm' (-f) g μ
                      theorem ProbabilityTheory.condIndepFun_of_measurable_left {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {X : Ωβ} {Y : Ωβ'} (hX : Measurable X) (hY : Measurable Y) :
                      CondIndepFun m' hm' X Y μ
                      theorem ProbabilityTheory.condIndepFun_of_measurable_right {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {X : Ωβ} {Y : Ωβ'} (hX : Measurable X) (hY : Measurable Y) :
                      CondIndepFun m' hm' X Y μ
                      theorem ProbabilityTheory.condIndepFun_self_left {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} { : MeasurableSpace Ω} [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {X : Ωβ} {Z : Ωβ'} (hX : Measurable X) (hZ : Measurable Z) :
                      theorem ProbabilityTheory.condIndepFun_self_right {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} { : MeasurableSpace Ω} [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] { : MeasurableSpace β} {mβ' : MeasurableSpace β'} {X : Ωβ} {Z : Ωβ'} (hX : Measurable X) (hZ : Measurable Z) :
                      theorem ProbabilityTheory.condIndepFun_iff_compProd_map_prod_eq_compProd_prod_map_map {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (hf : Measurable f) (hg : Measurable g) :
                      CondIndepFun m' hm' f g μ (μ.trim hm').compProd ((condExpKernel μ m').map fun (ω : Ω) => (f ω, g ω)) = (μ.trim hm').compProd (((condExpKernel μ m').map f).prod ((condExpKernel μ m').map g))

                      Two random variables are conditionally independent iff they satisfy the almost sure equality of conditional expectations μ⟦f ⁻¹' s ∩ g ⁻¹' t | m'⟧ =ᵐ[μ] μ⟦f ⁻¹' s | m'⟧ * μ⟦g ⁻¹' t | m'⟧ for all measurable sets s and t (see condIndepFun_iff_condExp_inter_preimage_eq_mul). Here, this is phrased with Markov kernels associated to the conditional expectations, and the almost sure equality is expressed as equality of the composition-product with the measure, which is equivalent to a.e. equality. See condIndepFun_iff_map_prod_eq_prod_map_map for the a.e. equality version with kernels.

                      For a random variable f, (condExpKernel μ m').map f is the law of the conditional expectation of f given m': almost surely, (condExpKernel μ m').map f ω s = μ⟦f ⁻¹' s | m'⟧ ω.

                      theorem ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [MeasurableSpace.CountableOrCountablyGenerated Ω (β × β')] (hf : Measurable f) (hg : Measurable g) :
                      CondIndepFun m' hm' f g μ ((condExpKernel μ m').map fun (ω : Ω) => (f ω, g ω)) =ᵐ[μ.trim hm'] (((condExpKernel μ m').map f).prod ((condExpKernel μ m').map g))

                      Two random variables are conditionally independent iff they satisfy the almost sure equality of conditional expectations μ⟦f ⁻¹' s ∩ g ⁻¹' t | m'⟧ =ᵐ[μ] μ⟦f ⁻¹' s | m'⟧ * μ⟦g ⁻¹' t | m'⟧ for all measurable sets s and t (see condIndepFun_iff_condExp_inter_preimage_eq_mul). Here, this is phrased with Markov kernels associated to the conditional expectations.

                      For a random variable f, (condExpKernel μ m').map f is the law of the conditional expectation of f given m': almost surely, (condExpKernel μ m').map f ω s = μ⟦f ⁻¹' s | m'⟧ ω.

                      theorem ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} (hf : Measurable f) (hg : Measurable g) :
                      CondIndepFun m' hm' f g μ MeasureTheory.Measure.map (fun (ω : Ω) => (ω, f ω, g ω)) μ = (μ.trim hm').bind (Kernel.id.prod (((condExpKernel μ m').map f).prod ((condExpKernel μ m').map g)))

                      Two random variables are conditionally independent with respect to m' iff the law of (id, f, g) under μ, in which the identity is to the space with σ-algebra m', can be written as a product involving the conditional expectations of f and g given m'.

                      For a random variable f, (condExpKernel μ m').map f is the law of the conditional expectation of f given m': almost surely, (condExpKernel μ m').map f ω s = μ⟦f ⁻¹' s | m'⟧ ω.

                      theorem ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_condDistrib_prod_condDistrib {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} { : MeasurableSpace Ω} [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {γ : Type u_5} { : MeasurableSpace γ} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [StandardBorelSpace β] [Nonempty β] [StandardBorelSpace β'] [Nonempty β'] (hf : Measurable f) (hg : Measurable g) {k : Ωγ} (hk : Measurable k) :

                      Two random variables f, g are conditionally independent given a third k iff the joint distribution of k, f, g factors into a product of their conditional distributions given k.

                      theorem ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} { : MeasurableSpace Ω} [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {γ : Type u_5} { : MeasurableSpace γ} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [StandardBorelSpace β] [Nonempty β] [StandardBorelSpace β'] [Nonempty β'] (hf : Measurable f) (hg : Measurable g) {k : Ωγ} (hk : Measurable k) :
                      CondIndepFun (MeasurableSpace.comap k inferInstance) g f μ (condDistrib f (fun (ω : Ω) => (k ω, g ω)) μ) =ᵐ[MeasureTheory.Measure.map (fun (ω : Ω) => (k ω, g ω)) μ] (Kernel.prodMkRight β' (condDistrib f k μ))

                      Two random variables f, g are conditionally independent given a third k iff the conditional distribution of f given k and g is equal to the conditional distribution of f given k.

                      @[deprecated ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight (since := "2025-10-14")]
                      theorem ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft {Ω : Type u_1} {β : Type u_3} {β' : Type u_4} { : MeasurableSpace Ω} [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {f : Ωβ} {g : Ωβ'} {γ : Type u_5} { : MeasurableSpace γ} { : MeasurableSpace β} {mβ' : MeasurableSpace β'} [StandardBorelSpace β] [Nonempty β] [StandardBorelSpace β'] [Nonempty β'] (hf : Measurable f) (hg : Measurable g) {k : Ωγ} (hk : Measurable k) :
                      CondIndepFun (MeasurableSpace.comap k inferInstance) g f μ (condDistrib f (fun (ω : Ω) => (k ω, g ω)) μ) =ᵐ[MeasureTheory.Measure.map (fun (ω : Ω) => (k ω, g ω)) μ] (Kernel.prodMkRight β' (condDistrib f k μ))

                      Alias of ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight.


                      Two random variables f, g are conditionally independent given a third k iff the conditional distribution of f given k and g is equal to the conditional distribution of f given k.

                      theorem ProbabilityTheory.iCondIndepFun.of_subsingleton {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_5} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} [Subsingleton ι] :
                      iCondIndepFun m' hm' f μ
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_finset {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_6} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (S T : Finset ι) (hST : Disjoint S T) (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) :
                      CondIndepFun m' hm' (fun (a : Ω) (i : S) => f (↑i) a) (fun (a : Ω) (i : T) => f (↑i) a) μ

                      If f is a family of mutually conditionally independent random variables (iCondIndepFun m' hm' m f μ) and S, T are two disjoint finite index sets, then the tuple formed by f i for i ∈ S is conditionally independent of the tuple (f i)_i for i ∈ T.

                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_6} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (fun (a : Ω) => (f i a, f j a)) (f k) μ
                      @[deprecated ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk (since := "2025-03-05")]
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_prod_mk {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_6} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (fun (a : Ω) => (f i a, f j a)) (f k) μ

                      Alias of ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk.

                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk_prodMk {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_5} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (h_indep : iCondIndepFun m' hm' f μ) (hf : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (fun (a : Ω) => (f i a, f j a)) (fun (a : Ω) => (f k a, f l a)) μ
                      @[deprecated ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk_prodMk (since := "2025-03-05")]
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_prod_mk_prod_mk {Ω : Type u_1} {ι : Type u_2} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {β : ιType u_5} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ωβ i} (h_indep : iCondIndepFun m' hm' f μ) (hf : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (fun (a : Ω) => (f i a, f j a)) (fun (a : Ω) => (f k a, f l a)) μ

                      Alias of ProbabilityTheory.iCondIndepFun.condIndepFun_prodMk_prodMk.

                      theorem ProbabilityTheory.iCondIndepFun.indepFun_mul_left {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (f i * f j) (f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_add_left {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (f i + f j) (f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_mul_right {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
                      CondIndepFun m' hm' (f i) (f j * f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_add_right {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
                      CondIndepFun m' hm' (f i) (f j + f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_mul_mul {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Mul β] [MeasurableMul₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (f i * f j) (f k * f l) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_add_add {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Add β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (f i + f j) (f k + f l) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_div_left {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (f i / f j) (f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_sub_left {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hik : i k) (hjk : j k) :
                      CondIndepFun m' hm' (f i - f j) (f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_div_right {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
                      CondIndepFun m' hm' (f i) (f j / f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_sub_right {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k : ι) (hij : i j) (hik : i k) :
                      CondIndepFun m' hm' (f i) (f j - f k) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_div_div {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Div β] [MeasurableDiv₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (f i / f j) (f k / f l) μ
                      theorem ProbabilityTheory.iCondIndepFun.indepFun_sub_sub {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [Sub β] [MeasurableSub₂ β] {f : ιΩβ} (hf_indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) (i j k l : ι) (hik : i k) (hil : i l) (hjk : j k) (hjl : j l) :
                      CondIndepFun m' hm' (f i - f j) (f k - f l) μ
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_finset_prod_of_notMem {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
                      CondIndepFun m' hm' (∏ js, f j) (f i) μ
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_finset_sum_of_notMem {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
                      CondIndepFun m' hm' (∑ js, f j) (f i) μ
                      @[deprecated ProbabilityTheory.iCondIndepFun.condIndepFun_finset_sum_of_notMem (since := "2025-05-24")]
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_finset_sum_of_not_mem {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : ιΩβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
                      CondIndepFun m' hm' (∑ js, f j) (f i) μ

                      Alias of ProbabilityTheory.iCondIndepFun.condIndepFun_finset_sum_of_notMem.

                      @[deprecated ProbabilityTheory.iCondIndepFun.condIndepFun_finset_prod_of_notMem (since := "2025-05-24")]
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_finset_prod_of_not_mem {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : ιΩβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ι), Measurable (f i)) {s : Finset ι} {i : ι} (hi : is) :
                      CondIndepFun m' hm' (∏ js, f j) (f i) μ

                      Alias of ProbabilityTheory.iCondIndepFun.condIndepFun_finset_prod_of_notMem.

                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_prod_range_succ {Ω : Type u_1} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [CommMonoid β] [MeasurableMul₂ β] {f : Ωβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ), Measurable (f i)) (n : ) :
                      CondIndepFun m' hm' (∏ jFinset.range n, f j) (f n) μ
                      theorem ProbabilityTheory.iCondIndepFun.condIndepFun_sum_range_succ {Ω : Type u_1} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {m : MeasurableSpace β} [AddCommMonoid β] [MeasurableAdd₂ β] {f : Ωβ} (hf_Indep : iCondIndepFun m' hm' f μ) (hf_meas : ∀ (i : ), Measurable (f i)) (n : ) :
                      CondIndepFun m' hm' (∑ jFinset.range n, f j) (f n) μ
                      theorem ProbabilityTheory.iCondIndepSet.iCondIndepFun_indicator {Ω : Type u_1} {ι : Type u_2} {β : Type u_3} {m' : MeasurableSpace Ω} [StandardBorelSpace Ω] {hm' : m' } {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [Zero β] [One β] {m : MeasurableSpace β} {s : ιSet Ω} (hs : iCondIndepSet m' hm' s μ) :
                      iCondIndepFun m' hm' (fun (n : ι) => (s n).indicator fun ( : Ω) => 1) μ